

Detailed Site Investigation

Proposed Childcare Centre Development 3 Memory Avenue, Crookwell, NSW 2583

Final Report

P2410601JR05V01 May 2025 Prepared for BlueSox Pty Ltd

environmental science & engineering

Project Details

Report Title	Detailed Site Investigation: 3 Memory Avenue, Crookwell, NSW 2583
Client	BlueSox Pty Ltd
Document	P2410601JR05V01
Director	Andrew Norris
Manager	Gray Taylor
Principal Author	Bryson Monaghan

Document History

Issue	Issue Date	Status	Description / Comment	Author	Reviewer	Approved
1	16/05/2025	Draft	Draft report for review	BTM	BM	GT
2	27/05/2025	Final	Final report	BTM	BM	GT

© Copyright Martens & Associates Pty Ltd Suite 201, 20 George St, Hornsby, NSW 2077, Australia ACN 070 240 890 ABN 85 070 240 890 P +61-2-9476-9999 | mail@martens.com.au | www.martens.com.au

Copyright Statement

Martens & Associates Pty Ltd (Publisher) is the owner of the copyright subsisting in this publication. Other than as permitted by the Copyright Act and as outlined in the Terms of Engagement, no part of this report may be reprinted or reproduced or used in any form, copied or transmitted, by any electronic, mechanical, or by other means, now known or hereafter invented (including microcopying, photocopying, recording, recording tape or through electronic information storage and retrieval systems or otherwise), without the prior written permission of Martens & Associates Pty Ltd. Legal action will be taken against any breach of its copyright. This report is available only as book form unless specifically distributed by Martens & Associates in electronic form. No part of it is authorised to be copied, sold, distributed or offered in any other form.

Contents

1	Introduction1		
	1.1	Overview1	
	1.2	Proposed Development1	
	1.3	Objectives1	
	1.4	Scope of Works2	
	1.5	Regulatory Guidelines2	
2	Site an	d IA Setting3	
	2.1	Site and IA Identification3	
	2.2	Environmental Setting3	
	2.3	Hydrogeology and Groundwater Use4	
	2.3.1	Hydrogeological Setting	
	2.3.2	Groundwater Uses	
3	Inspect	tion of the IA	
4	Previo	us Investigation7	
5	Concep	otual Site Model	
	5.1	Areas of Environmental Concern8	
	5.2	Source – Exposure Pathway – Receptor Linkages8	
	5.3	Review of Information Data Gaps8	
6	Sampli	ng, Analysis and Quality Plan10	
	6.1	Data Quality Objectives10	
	6.2	Data Quality Indicators15	
	6.3	Site Assessment Criteria15	
	6.4	Field Investigation Methodology16	
	6.4.1	Soil Investigation	
	6.5	Sampling and Analysis Rationale17	
7	Field a	nd Analytical Results 19	
	7.1	Investigation Constraints19	
	7.2	Data Quality Assessment19	
	7.3	Subsurface Conditions and Field Observations19	
	7.4	Soil Results19	
	7.4.1	Soil Analytical Results	
	7.5	Discussion20	
8	Conclu	sions and Recommendations21	
9	Limitat	tions Statement	
10	10 References		
Арј	pendix A	4 – Maps	

Appendix B – Development and Survey Plans	. 30
Appendix C – Groundwater Bore Information	. 37
Appendix D – Test Pit Logs	. 49
Appendix E – Data Quality Assessment	. 58
Appendix F – Summary Laboratory Results Tables	. 62
Appendix G – Laboratory Analytical Documentation	. 69
Appendix H – COC and Sample Receipt1	104
Appendix I – EIL Calculation Sheets 1	113
Appendix J – Photograph of the IA1	118

Tables

.3
.3
.5
.6
.7
.8
.8
.9
11
15
16
17
18

Glossary of Terms

ABC	Ambient background concentrations
ACI	Added contaminant level
ACM	Ashestos containing material
AEC	Area of environmental concern
a	Aloba
ΔΡΗΔ	American Public Health Association
	Australian Standard
	Above ground storage tank
ASI D	Poto
p	Dela Delaw ground lovel
BGL	Below ground level
BOM	Bureau of Meteorology
BIEXN	Benzene, toluene, ethylbenzene, xylene, naphthalene
CEC	Cation exchange capacity
CLM	Contaminated land management
COC	Chain of custody
COPC	Contaminants of potential concern
CSM	Conceptual site model
DA	Development application
DCP	Development control plan
DCS	Department of Customer Service (NSW)
DEC	Department of Environment and Conservation (NSW)
DECC	Department of Environment and Climate Change (NSW)
DECCW	Department of Environment, Climate Change and Water (NSW)
DP	Deposited plan
DPE	Department of Planning and Environment (NSW)
DPI	Department of Primary Industry (NSW)
DQI	Data guality indicator
DOO	Data quality objective
DSI	Detailed Site Investigation
DUAP	Department Urban Affairs and Planning (NSW)
FC	Electrical conductivity
FII	Ecological investigation level
FPA	Environmental Protection Authority (NSW)
FOI	Estimated quantitation limit (interchangeable with POL and LOR)
FSI	Ecological screening level
GDF	Groundwater dependent ecosystem
НАР	Historical aerial nhotography
	Historical Air Photo Enhancement program
	Hoods of EPAs Australia and Now Zooland
	Health investigation level
	Health Investigation level
	Heavy metals
HSL	
IA	Investigation area
L	Litres
LEP	Local environmental plan
LGA	Local government area
LOR	Limit of reporting
MA	Martens & Associates Pty Ltd
mAHD	Metres Australian Height Datum
mBGL	Metres below ground level
μS/cm	Microsiemens per centimetre
MQO	Measurement quality objectives
NATA	National Association of Testing Authorities
NEMP	National Environmental Management Plan
NEPC	National Environment Protection Council

National Environment Protection Measure
New South Wales
Organochlorine pesticides
Organophosphorus pesticides
Potential asbestos containing material
Polycyclic aromatic hydrocarbons
Polychlorinated biphenyl
Protection of the Environment Operations
Practical quantitative limit (interchangeable with EQL and LOR)
Preliminary Site Investigation
Quality assurance
Quality control
Remedial action plan
Reduced level
Relative percentage difference
Site acceptance criteria
Sampling, analysis, and quality plan
Site contamination assessment
Standard deviation
Spatial digital twin
Sustainable Development Group Pty Ltd
Search engine for environmental data
State Environmental Planning Policy
Standard operating procedure
Spatial Service
Sample receipt advice
Standing water level
Trip blank
Test pit
Total petroleum hydrocarbons
Total recoverable hydrocarbons
Upper confidence limit
Underground petroleum storage system
Unified Soil Classification System
Underground storage tank

1 Introduction

1.1 Overview

Martens and Associates (**MA**) were engaged by BlueSox Pty Ltd (**the Client**) to undertake a Detailed Site Investigation (**DSI**) for land located at 3 Memory Avenue, Crookwell, NSW (the Site).

This DSI has been prepared to support a development application (**DA**) to Upper Lachlan Shire Council (the Council) for a proposed 20-lot residential subdivision, which includes the development of residential dwellings and a childcare facility.

The scope of this DSI is limited to the portion of the Site designated for the proposed childcare centre (hereafter referred to as the Investigation Area or **IA**). The potential for land contamination will be assessed within this defined IA.

This DSI follows a Preliminary Site Investigation (**PSI**) previously completed by MA for the broader Site area. The Site boundary and IA are shown in Appendix A (Map 01).

1.2 Proposed Development

Based on the preliminary design plan, the proposed childcare development will comprise:

- A single-level, at-grade structure;
- A car park with 18 spaces; and
- A formal outdoor play area.

The proposed development layout is shown on the childcare development plan (Faubourg, 2025) and survey plan (SDG, 2024), provided in Appendix B.

1.3 Objectives

Investigation objectives include:

- Review the findings of the previous PSI (MA, 2025) in relation to the IA.
- Identify historical and current activities on the IA and adjacent land which could potentially result in land contamination.
- Establish areas of environmental concern (**AEC**) and associated contaminants of potential concern (**COPC**) to assist with the development of a conceptual site model (**CSM**) for the IA.
- Quantify potential risks associated with land contamination through a targeted soil sampling and laboratory analysis program.
- Assess the suitability of the IA for the proposed childcare use and, if required, provide recommendations for further investigation, remediation, or management.

1.4 Scope of Works

The scope of works adopted for the investigation included:

- Completion of an intrusive soil investigation, including targeted soil sampling within the IA.
- Laboratory analysis of soil samples for COPC, as identified in the CSM.
- Preparation of a report in accordance with the relevant guidelines.

1.5 Regulatory Guidelines

The following regulatory guidelines have been considered for the preparation of this report:

- NSW DUAP (1998) Managing Land Contamination: Planning Guidelines.
- NEPC (2013a) Schedule B1: Guideline on Investigation Levels for Soil and Groundwater.
- NEPC (2013b) Schedule B2: Guideline on Site Characterisation.
- NSW EPA (2017) Contaminated Land Management: Guidelines for the NSW Site Auditor Scheme.
- NSW EPA (2020) Contaminated Land Guidelines: Consultants Reporting on Contaminated Land.
- NSW EPA (2022) Contaminated Land Guidelines: Sampling design part 1 application
- State Environmental Planning Policy (Resilience and Hazards) 2021.
- State Environmental Planning Policy (Educational Establishments and Child Care Facilities) 2017.
- Upper Lachlan Development Control Plan 2010
- Upper Lachlan Local Environmental Plan 2010

2 Site and IA Setting

2.1 Site and IA Identification

Site and IA identification details are provided in Table 1. The location of the Site, IA and surrounding land is shown in Appendix A (Map 01).

Table 1: Site and IA identification information.

Item	Detail
Site address	3 Memory Avenue, Crookwell NSW 2583
Legal identification	Lot 2 DP 702788
Proposed Legal identification	Lot 4
Investigation area	Approximately 2050 m ² (Faubourg, 2025)
Geographic coordinates	 Southeast corner of the IA (datum GDA2020 - MGA55): Easting: 727622 Northing: 6185257 (Source: NSW SDT Explorer 2025)
Local government area	Upper Lachlan Shire Council
Zoning	R2 – Low Density Residential (Upper Lachlan Local Environmental Plan 2010)
Current land use(s)	Rural
Proposed land use(s)	Childcare Centre
Surrounding land use	 North - low density residential and rural residential land use. East - Crookwell Cemetery followed by rural residential and agricultural land use. South - low density residential rural land use. West - low density residential, general industrial and public recreational land use.

2.2 Environmental Setting

Information relating to the environmental setting of the site is presented in Table 2.

 Table 2: Environmental setting information.

ltem	Detail
Topography	The topography of the surrounding landscape is characterised by plateaux or valleys of gently undulating to undulating rises. Slope gradients are usually between 2 to 15% and local relief ranges between 5 to 40 m.
	Elevation of the IA ranges from approximately 910.5 mAHD in the southwest portion and 922 mAHD in the eastern portion.
	A topographic map of the IA is provided in Appendix A (Map 02).

Item	Detail
Geology	The eSPADE (NSW DPE, 2025) platform indicates the following geology is mapped within the IA:
	 Crookwell Basalt of Tertiary lava flows with irregular basalt surface indicative of valley fills. Soils have formed in situ and from alluvial- colluvial material derived from the parent rock.
	Geological mapping produced by the NSW Geological Survey (A.J. Johnston, et al., 2013) as provided on the web platform MinView (GSNSW, 2025), indicates geology at the IA consists of:
	 Crookwell Basalt - unconsolidated to semi-lithified, poorly sorted, fine to medium grained, quartzose sane to pebble to boulder sized, polymictic gravels, silica, iron and sandstone and conglomerate, minor clay horizons.
	Mapping for NSW relating to areas where naturally occurring asbestos is known to occur, or has the potential to occur, in geological units was reviewed on the NSW SEED spatial viewer (NSW DPIE, 2025). Mapping did not identify geological units with known or potential naturally occurring asbestos within (or adjacent to) the IA.
Soil landscapes	The eSPADE (NSW DPE, 2025) platform indicates the following soil landscape is mapped within the IA:
	 Taralga Soil Landscape – Krasnozems and Xanthozem are found on crests. On sideslopes, friable to slightly hardsetting, acid, texture- contrast soils similar to Chocolate Soils predominate. Prairie Soils are common on footslopes, with alluvial soils and wiesenbodens in drainage lines.
	eSPADE soil modelling covering the IA indicate soil cation exchange capacity (CEC) of the upper 2.0 m of soil ranges between ≤5 and 20 cmol _c /kg, while pH values range between pH 4 and pH 6.
Acid sulfate soils	Acid sulfate soils (ASS) risk mapping associated with the Upper Lachlan Local Environmental Plan 2010 indicates the IA is mapped beyond Class 5 area indicating no ASS risk associated with the IA.
Surface hydrology	Drainage is likely to occur by a combination of direct soil infiltration and overland flow.
Nearest surface waterbody	Tributary located 500m southeast leads to Kiamma Creek followed by Crookwell River.
Heritage	Crookwell Cemetery located directly to the east of the IA is mapped as a heritage item.
	(Upper Lachlan Local Environmental Plan 2010)

2.3 Hydrogeology and Groundwater Use

In accordance with NSW DEC (2007) *Guidelines for the Assessment and Management of Groundwater Contamination*, preliminary assessment to identify hydrogeological conditions and groundwater receptors has been completed to assist with CSM development. Finding of this preliminary assessment is provided in the following subsections.

2.3.1 Hydrogeological Setting

The Bureau of Meteorology Australian Groundwater Insight database (BoM, 2025) indicates the principal hydrogeology of the Crookwell area consists of fractured or

fissured, extensive aquifers of low to moderate productivity. Aquifers comprise an upper aquifer in basalt.

2.3.2 Groundwater Uses

The WaterNSW Real-time Water Database was reviewed to identify local groundwater uses ≤500 m of the IA. A summary of available bore records is provided in Table 3. A map of surrounding groundwater bores and their records is provided in Appendix C.

Bore Identification	Registered Use	Direction (and Distance)	Groundwater Depth (mBGL)	Water bearing Zone Information
GW702814	Domestic	60 m, northwest	9.00	Shale – 7.0 to 20.0 mBGL, yield 3.791 L/s.
GW703243	Domestic	305 m, northwest	12.00	Shale – 8.0 to 24.0 mBGL.
GW058774	Domestic	440 m, south	Unknown	Unknown
GW053590	Irrigation	470 m, northwest	21.30	Basalt decomposed - fractured – 15.2 to 22.3 mBGL, yield 2.53 L/s.
GW702705	Domestic	499 m, northwest	3.00	Basalt – 1.5 to 6.0 mBGL, yield 3.375 L/s.

Table 3: Groundwater bore records summary.

Groundwater is primarily used for domestic and irrigation purposes in surrounding properties, with the closest registered bore located approximately 60 m northwest of the IA. Groundwater depths range from approximately 3.0 mBGL to over 21 mBGL, with yields generally between 2.5 and 3.8 L/s.

No registered groundwater extraction occurs within the IA itself. Groundwater extraction is not anticipated as part of the proposed development, and beneficial reuse is not expected.

A review of the Bureau of Meteorology Groundwater Dependent Ecosystems (GDE) Atlas (BoM, 2025) identified no aquatic GDEs within 500 m of the IA. Terrestrial and subterranean GDEs have not been assessed in the area; however, inflow-dependent ecosystems (IDE) may be present. Based on available information, the presence of sensitive environmental receptors associated with groundwater is considered unlikely.

3 Inspection of the IA

An inspection of the IA was conducted for the investigation by an experienced MA Environmental Consultant on 27 February 2025. Observations made during the inspection are provided below in Table 4.

 Table 4: Inspection of the IA observations

Item	Observation
Buildings and structures	No buildings were present within the IA. A fence structure was noted along the southern and eastern boundaries (refer to Plate 1).
Ground surfaces and pavements	The IA was predominantly covered by rural vegetation (refer to Plates 1 and 2). No formal pavement or hardstand was observed.
Fill material and stockpiles	No evidence of fill material or stockpiles was observed.
Historic structures	No evidence of former structures was noted.
Chemical storage	No chemical storage was observed.
UPSS, USTs and ASTs ¹	No evidence of UPSS, USTs, and ASTs was identified.
Waste materials and storage	No waste materials or storage areas were observed.
Odours and staining	No significant odours or staining were noted.
Hazardous building materials	No hazardous building materials were observed.
Electrical substation kiosks	No electrical substations or kiosk infrastructure was noted on or adjacent to the IA.
Vegetation and phytotoxicity	The IA was covered with rural grasses, with sparse shrubs and trees in the northern portion. Vegetation appeared healthy, with no visible signs of phytotoxicity.

Notes:

^{1.} Underground petroleum storage systems (UPSS), underground storage tanks (USTs), and aboveground storage tanks (ASTs).

A selection of photographic images obtained during the inspection of the IA are provided in Appendix J.

4 **Previous Investigation**

For preparation of the DSI, MA have reviewed the following report relating to previous environmental investigation at the IA:

 Martens and Associates Pty Ltd (2025) Preliminary Site Investigation, Proposed Residential Subdivision: 3 Memory Avenue, Crookwell NSW, document reference P2410601JR02V01, dated 28 April 2025 (MA, 2025).

A summary of the key findings provided in the MA (2025) report, in relation to the proposed childcare (Lot 4), are detailed in Table 5.

 Table 5: Summary of the MA (2025) investigation.

ltem	Detail
MA (2025) Preliminary	Site Investigation
Desktop study	Key findings of the desktop study include:
	• Historical aerial imagery suggests that some amount of cropping is likely to have occurred within the IA between at least 1963 and 1994. However, poor image quality makes it difficult to confirm definitively.
	• The IA is not listed on any government register of contaminated land or hazardous industries.
	• No surrounding land use presents a contamination risk to the IA.
Area of	The following AEC were identified:
environmental concern (AEC)	• Former agriculture land use and possible cropping.
Conceptual site model (CSM)	• The CSM identified soil as a potentially affected medium due to historical land use.
	 Potential exposure pathways and receptors (human health and ecological) were identified, suggesting a possible risk under the proposed development scenario.
Conclusions and recommendations	• The PSI concluded that potential risks to receptors may exist and further characterisation was warranted.
	• A DSI was recommended to assess COPC in soil through targeted sampling and laboratory analysis.

5 Conceptual Site Model

5.1 Areas of Environmental Concern

An assessment of potential areas of environmental concern (AEC) and contaminants of potential concern (COPC) has been made for the IA on the basis of previous investigation findings and is provided in Table 6.

 Table 6: Potential contamination sources and contaminants of potential concern.

AEC	Potential for Contamination	СОРС
AEC A	Due to the IA's historical agricultural land use,	Heavy Metals (HM),
Former agriculture land use / Possible cropping	ncluding possible cropping, the application of horticultural/agricultural chemicals and pesticides for pest control may have occurred.	organochlorine pesticides (OCPs) / organophosphate pesticides (OPP).

5.2 Source – Exposure Pathway – Receptor Linkages

A conceptual site model (CSM) outlining *source – exposure pathway – receptor* linkages has been developed from information available reporting and is presented in Table 7.

ltem	Description
Potential media affected by AEC and mechanism of contamination	Soil is considered the primary affected medium due to the identified AEC. Contaminants are likely to be associated with historical surface application of pesticides or agricultural chemicals, resulting in potential 'top-down' impacts. Contamination, if present, is expected to be spatially limited and occur predominantly in surface and near-surface soils.
	Groundwater is not considered to be a media of interest. No extensive excavations are proposed and thus interception with groundwater is unlikely to occur.
Potential exposure pathways	Potential anthropogenic exposure pathways include ingestion, dermal absorption, inhalation (of dust and / or vapours). Potential ecological exposure pathways include biota uptake and intake.
Potential receptors	Potential human receptors include future users and visitors (adults and children) as well as construction and maintenance work during proposed development works and ongoing maintenance within the IA.
	Potential ecological receptors include flora and fauna within the IA and surrounding environment.

 Table 7: Conceptual site model source – exposure pathway – receptor linkages.

5.3 **Review of Information Data Gaps**

A summary of information or data which has not been obtained or considered for inclusion in the DSI is discussed in Table 8. This summary also discusses possible constraints and uncertainty relating to the development of the investigation CSM.

Table 8: Information data gap summary.

Data Gap	Commentary
Land title records	Land title records were not reviewed as part of this DSI. This is unlikely to affect the findings of the investigation as sufficient historical information relating to former activities within the IA was obtained from historical aerial photography interpretation and inspection of the IA (MA, 2025).
Safework NSW dangerous goods records	There is no historical evidence of large volume storage of petroleum hydrocarbons in the IA, nor of past site uses likely to have required such storage. As such, a search of SafeWork NSW dangerous goods records was not obtained for the investigation.
Section 10.7 planning certificate	Section 10.7 planning certificates were not obtained for review as part of the DSI. it is considered information provided in the planning certificate is unlikely to change the conclusions or recommendations of this report as sufficient historical information relating to former activities within the IA was obtained from historical aerial photography interpretation and inspection of the IA (MA, 2025).

6 Sampling, Analysis and Quality Plan

A sampling, analysis and quality plan (SAQP) was developed to ensure sampling data collected for this DSI is representative and provides a robust basis for site assessment decisions. The SAQP has been prepared in general accordance with NEPC (2013b) methodology, and includes:

- Data quality objectives (DQO).
- Data quality indicators (DQI).
- Sampling methodologies and procedures.
- Field screening methods.
- Sample handling, preservation, and storage procedures.
- Field and laboratory quality assurance (QA) / quality control (QC).

The SAQP is summarised in the following subsections.

6.1 Data Quality Objectives

DQOs for the investigation are prepared as statements specifying the qualitative and quantitative data required to support project decisions. DQOs have been prepared in general accordance with NEPC (2013b) and NSW EPA (2020) and are presented below in Table 9.

Table 9: Data quality objectives.

D	QO Process Step	DQO Output
1	State the problem	
	Summary of contamination problem	Media associated with AEC requires characterisation to determine land use suitability.
	CSM summary	Contaminants – potentially metals (HM) and pesticides (OCP/OPP).
		Sources – former agriculture land use and possible cropping.
		• Pathways – dermal absorption, inhalation of dust and/or vapour, ingestion and biota uptake / intake have been identified as the pathways of concern.
		• Receptors – future users and visitors (adults and children), construction and maintenance work as well as flora and fauna within the IA and surrounding environment.
	Investigation constraints	No practical constraints have been identified.
2	Identify goals of the study	
	Principal study question(s)	• Is soil suitable for a residential land use based on contaminant levels?
		• If not, is further investigation, remediation, or management required before media can be considered suitable for proposed development land use?
	Alternative outcomes or actions that could	The alternative outcomes will be:
	result from resolution of the principal study	• Soil is suitable for residential land use (HIL-A).
		Or
		Soil is not suitable for the proposed land use and remediation is needed to allow development.
	For decision problems, combine the principal	• If the contamination status of soil is acceptable, the land is suitable for residential land use.
	study questions and the alternative actions into decision statements	• If the contamination status of soil <u>is unacceptable</u> , prepare a remedial action plan (RAP).
3	Identify information inputs	
	Information required to resolve the decision	Development plans.
	statements/estimation	Information from previous investigation.
		Soil data collected by investigation, including field samples and analytical samples.
		Observations during data collection.
	Information needed to establish action	Investigation criteria will be sourced from:
	level(s)	NEPC (2013) Schedule B1 HILs and HSLs for residential with accessible soil, EILs and ESLs, and Management Limits.

D	QO Process Step	DQO Output
	Sampling and analytical methods to provide necessary data	 Sampling and analytical methods will be consistent with existing guidance, including the NEPC (2013) Schedule B2 and B3. Analytical laboratories will be NATA-accredited and use analytical methods based on NEPM, USEPA and APHA methods.
4 Define the study boundaries		
	Target population of interest and relevant spatial boundaries	 The decision area is approximately 2050 m². Fill is not expected across the IA.
	Definition of sampling unit(s)	 Sampling units will consist of: <u>Field samples</u> of appropriately described and logged samples. <u>Analytical samples</u> of the laboratory-specified sample jar quantity.
	The smallest unit on which decisions or estimates will be made	The decision is to be based on the complete decision area. However, following data analysis, some segregation may be considered (i.e., some of the decision area may be suitable for HIL-A and some may require remediation).
5	Develop the analytic (statistical) approach	
	The statistical parameter that characterises the population of interest	The 95% UCL of the arithmetic mean (x̄) will be the key statistical parameter. Evaluation of data will include: The 95% UCL x̄ to be ≤ criterion. No individual sample >250% of criterion. The sample standard deviation (SD) to be <50% criterion. No asbestos containing material (ACM) observed on the ground surface or detected in soil. No laboratory detection of asbestos fibres in soil.
	The action level for decision	 To determine if the material is suitable for HIL-A land use, analytical action levels are to be based on the NEPM HILs and HSLs (NEPC, 2013; Schedule B1). If the material is not suitable for the HIL-A land use, then a RAP is to be prepared. Samples will be held at the laboratory for additional analyses (if required).
	Confirmation that measurement detection will allow reliable comparisons with the action level	 Samples will be submitted to NATA-accredited laboratories. Limit of reporting (LOR) adopted by analytical laboratories will be below the adopted criteria. To achieve an acceptable LOR for asbestos fines and fibrous asbestos, the method may not be NATA-accredited, undertaken using inhouse laboratory methods for quantification.

D	QO Process Step	DQO Output
	Combined outputs from previous DQOs steps, developed as an ' <i>if, then, else'</i> theoretical decision rule based on chosen action levels.	 If the statistical parameters of the sampling data exceed applicable action levels, <u>then preparation of a RAP will be required.</u> Otherwise If the statistical parameters are below applicable action levels, <u>then land will be determined to be suitable for HIL-A land use.</u>
6	Specify performance or acceptance criteria	
	The decision rule as a statistical hypothesis test.	 The <u>null hypothesis</u> is that soil is contaminated and exceeds adopted criteria. The <u>alternative hypothesis</u> is that soil is not contaminated above the adopted criteria.
	Consequences of making incorrect decisions from the test.	 Possible decision errors include: Soil material being accepted as suitable for HIL-A land use when it is not, thereby potentially risking human health or environmental impacts. Unnecessary remediation of soil material offsite, imposing needless financial and resource burdens on the development project.
	Acceptable limits on the likelihood of making decision errors, including acceptable alpha (α) and beta (β) risk levels	Stated hypotheses: • Null hypothesis (H0): the 95% UCL, and other requirements, are > the action level; and • Alternate hypothesis (HA): the 95% UCL, and other requirements, are \leq the action level. Potential outcomes include Type I and Type II errors: • Type I error of determining the soil material is acceptable for the proposed HIL-A land use when it is not (wrongly rejects true H0). • Type II error of determining the soil material is unacceptable for the proposed HIL-A land use when it is (wrongly accepts false H0). • Type II error of determining the soil material is unacceptable for the proposed HIL-A land use when it is (wrongly accepts false H0). • Type II error of determining the soil material is on the likelihood of making decision errors to be applied are: • Alpha risk (Type I error) of $\alpha = 0.05$ • Beta risk (Type II error) of $\beta = 0.2$.
7	Optimised design for obtaining data	
	Sampling and analysis design	To allow statistical inference, a probabilistic systematic sampling strategy is to be adopted to screen soils for diffuse contamination. NSW EPA (2022) minimum grid-based sampling requirements will be adopted for the investigation based on the decision area of 2050 m ² . Eight test locations will be set out on an approximate 16 m square grid designed to detect an 18.7 m diameter hotspot with 95% confidence. Test pits will be excavated at each sampling location into underlying natural material. Field samples will be collected at the ground surface (0.0-0.1 m) at each sampling location. Samples will be selected for analytical testing based on the soil units encountered at sampling locations and field observations made (including visual and olfactory evidence).

DQO Process Step		DQO Output		
	Implementation of the design and contingency plans	The field methods for sample collection, handling, and analysis (at analytical laboratories) are described in Section 6.4 and 6.5. Contingencies include, collecting additional samples from material that is significantly different from the reworked natural, and conducting additional analysis where field indicators (staining, odours, field screening results) suggest other contaminants.		
	QA/QC procedures	Required field QA and field and laboratory QC are described in Section 6.2 and include data quality indicators (DQIs) and associated measurement quality objectives (MQOs).		
	Operational details and theoretical assumptions of the selected design in the SAQP.	 Theoretical assumptions include: Soil material is relatively homogenous, consists of natural material, and only minor wastes exist (if any). 		

6.2 Data Quality Indicators

In accordance with NSW EPA (2017, 2020), the field and laboratory data set obtained for the investigation will be compared with DQIs outlined in Table 10 to ensure acquired data meets the needs of the project and DQOs have been met.

Table 10: Data quality indicators.

Assessment Measure (DQI)	Comment		
Precision – a measure of the variability (or reproducibility) of data.	Precision will be assessed by collection of a minimum 10% field duplicates and calculation of the relative percent difference (RPD) with parent samples. Data precision will be deemed acceptable where results are:		
	• Any RPD (for 0 - 10 x EQL), or		
	• RPD <50% (for 10 - 30 x EQL) or		
	• RPD <30% (for >30 x EQL)		
	Exceedance of this range may still be considered acceptable where heterogeneous materials are sampled.		
Accuracy – a measure of the	Data accuracy will be assessed by:		
closeness of reported data to	• Field spikes and blanks.		
the true value.	Laboratory duplicates, spikes, surrogates, and blanks.		
Representativeness – confidence that data is	To ensure data representativeness, the following field and laboratory procedures will be followed:		
representative of each media present on site.	• Design and implementation of the sampling program completed in accordance with the SAQP.		
	 Use of a trip spike for assessing volatile losses during field sampling and a trip blank to ensure no cross contamination or laboratory artefacts. 		
	 Laboratory hold times are met, and sample handling and transportation is completed in accordance with the SAQP. 		
Completeness – a measure	To ensure data set completeness, the following is required:		
of the amount of usable data from a data collection	• Confirmation sampling was completed in general accordance with SAQP.		
activity.	• Provision of COC and sample receipt forms.		
	• Provision of results from all laboratory QA / QC samples (lab blanks, trip blank and trip spike, lab duplicates).		
	Use of appropriate sampling and analytical methods.		
	• NATA accreditation stamp on all laboratory reports.		
Comparability – confidence	Data comparability will be maintained by ensuring:		
that data may be considered equivalent for each sampling	• All sampling events undertaken follow methodologies outlined in the SAQP and published guidelines.		
and analytical event.	 NATA accredited laboratory methodologies are followed for all laboratory analysis. 		

6.3 Site Assessment Criteria

Site assessment criteria (SAC) adopted for the characterisation of soil for the DSI are summarised in Table 11.

Adopted Rationale Guidelines Soils NEPC (2013a), HEPA Health investigation levels (HIL) (2025) Samples are assessed against: NEPC (2013a) HIL-A investigation levels for residential (with soil access) land use. Health screening levels (HSL) Petroleum hydrocarbons Samples are assessed against: NEPC (2013a) soil HSL-A&B - low to high density residential land use (silt dominant soils) have been considered for soil vapour intrusion. Asbestos Asbestos HSLs outlined in NEPC (2013a) have not been adopted for this investigation. Alternatively, presence of asbestos in soils or in material samples is assessed on a detect / non detect basis. Should asbestos be detected in samples, or evidence of demolition debris be present in soil, further asbestos investigation and quantification may be required. Management Limits NEPC (2013a) management limits have been adopted for the petroleum hydrocarbons for residential / parkland - coarse textured soils. NEPC (2013a), HEPA Ecological Investigation Levels (EIL) (2025), CRC CARE EILs for select metals, DDT, and naphthalene are derived from NEPC (2013a) for (2017)protection of terrestrial ecosystems in residential & public open space. EILs are calculated using Added Contaminant Levels (ACL) for respective contaminants in NEPC (2013a) using the most conservative pH, CEC, clay content values, and Ambient Background Concentrations (ABC) are derived from NSW - old suburb / low traffic ABCs, tabulated in NEPC (2013d). Contamination is also considered aged (>2 years). Soil parameters adopted for EIL calculations are based on compiled site-specific analytical data, where noted: CEC – 15 cmol_c/kg (based on laboratory analysis, see Appendix F) pH – pH 6.3 (based on laboratory analysis, see Appendix F) Clay content - 30% Organic carbon content - 10% EIL calculation sheets are provided in Appendix I. Ecological Screening Levels (ESL) TRH and BTEX are assessed against ESLs for urban residential & public open space coarse textured soils presented in NEPC (2013a). High reliability ecological guideline levels provided in Table 11 of CRC CARE (2017) have been adopted for benzo(α)pyrene (fresh), as an alternative to low reliability ESLs values outlined in NEPC (2013a).

Table 11: IA assessment criteria.

6.4 Field Investigation Methodology

6.4.1 Soil Investigation

The methodology adopted for field investigation and sampling of soils to meet established project DQOs is provided in Table 12.

	Table 12: Soi	l investigation	and sampling	methodology.
--	---------------	-----------------	--------------	--------------

ltem	Description		
Date of fieldworks	Soil investigation and sampling was completed on 1 May 2025.		
Investigation method(s)	Soil investigation was conducted by the following methods:		
	• Excavating eight test pits (TP101 – TP108) using hand tools		
	Sampling locations are shown in Appendix A (Map 04).		
Soil logging	Soils were classified in the field with respect to lithological characteristics and texture. Soil classifications and descriptions were based on the Unified Soil Classification System (USCS) and Australian Standard (AS) AS1726:2017 - <i>Geotechnical IA Investigations</i> . Soils were also evaluated qualitatively for odour, visual evidence of contamination, and anthropogenic inclusions.		
	soil descriptions and field observations is provided in Section 7.3		
Soil sampling	Soil samples were obtained from by an experienced MA environmental consultant using a dedicated, clean pair of nitrile gloves for collection of each sample.		
	Each sample obtained from test pit excavations was collected directly from soils within the test pit.		
	Each sample was placed into a laboratory supplied, 250 mL glass jar, with no headspace (to limit volatile loss) and labelled with a unique sample identifier.		
Sample preservation	Soil samples were stored in a refrigerated (ice filled) chest, whilst onsite and in transit to the laboratory. All samples were submitted and analysed within the required holding period, as documented in laboratory sample receipt advice (SRA) presented in Appendix H.		
QC sampling	The following quality control (QC) sampling rates were proposed for soil investigation:		
	• Field duplicate samples were collected and analysed at a rate 10%.		
	• A laboratory prepared trip blank and trip spike were stored with collected soil samples in the field and during transportation to the analytical laboratory for each analytical sample batch.		
Sample handling and transport	Sample storage and transport was conducted according with industry guidance and standards. Samples were placed immediately into an ice chilled cooler box following collection.		
	Primary samples were dispatched to Envirolab Services Pty Ltd (Envirolab), a NATA accredited analytical laboratory, under chain of custody (COC) conditions for analysis.		
	COC certificates and SRA documentation was provided to MA for confirmation purposes and is attached in Appendix H.		

6.5 Sampling and Analysis Rationale

Sample analysis was completed in accordance with NEPC (2013c) *Schedule B3: Guideline on Laboratory Analysis of Potentially Contaminated Soils*. The laboratory analytical suite used for the investigation is provided in Table 13.

СОРС	Soil Samples	QC Samples	QC Purpose
Heavy metals	8	1	Intra laboratory duplicates
Chromium Speciation	8	1	Intra laboratory duplicates
OCP / OPP	8		
BTEXN	1	1	Trip spike
TRH	1	1	Trip blank
РАН	1		
РСВ	1		
Asbestos (in soil)	1		
CEC	2		
рН	2		

Table 13: Summary of COPC laboratory analysis of media.

Based on the conceptual site model (CSM), heavy metals and pesticides (OCP/OPP) were identified as the COPC due to the site's historical agricultural use. Accordingly, the analytical program primarily targeted these COPC. For completeness, a single soil sample was also submitted for a broader suite of analytes—including BTEXN, TRH, PAHs, PCBs, and asbestos—to screen for any unexpected contamination and ensure a comprehensive assessment of site conditions.

7 Field and Analytical Results

7.1 Investigation Constraints

The proposed scope of works (Section 1.4) for the investigation was completed. No practical constraints were encountered during the investigation.

7.2 Data Quality Assessment

Field and laboratory QA/QC has been reviewed for the investigation and is presented in the Data Quality Assessment provided in Appendix E.

Assessment of the field and analytical data produced by the investigation indicated that data adequately satisfies the DQIs that were developed for the investigation. It is therefore concluded that the overall data quality is of an acceptable standard to be used for interpretation.

7.3 Subsurface Conditions and Field Observations

No fill material was observed at any test pit location within the IA. Natural soils were encountered to a maximum investigation depth of 0.3 m below ground level (mbgl) and generally comprised brown to light brown clayey silt.

All test pits were terminated upon refusal on shallow bedrock, which limited investigation depth.

Groundwater seepage was not encountered at any location.

No visual or olfactory evidence of contamination (e.g., staining or odours) was noted in soils during excavation. Anthropogenic materials, including demolition debris or potential asbestos-containing material (PACM), were not observed during test pitting or sample collection.

Test locations are shown on the sampling plan in Appendix A (Map 04), with detailed test pit logs provided in Appendix D. Selected photographs from the field investigation are included in Appendix J

7.4 Soil Results

7.4.1 Soil Analytical Results

A summary of laboratory analytical results for analysed soil samples, compared to adopted SAC, is provided in Table 14. A detailed tabulation of soil analytical results showing individual samples compared to adopted SAC is provided in Appendix F. Laboratory analytical documentation is available in Appendix G.

Analyte	Results Compared to SAC
Heavy metals	Most heavy metals were reported at concentrations below the laboratory limit of reporting (LOR) or below the adopted SAC.
	However, total chromium was reported in all samples at concentrations between 160 and 240 mg/kg, exceeding the NEPM (2013) HIL for Chromium (VI) of 100 mg/kg. As such, chromium speciation analysis was undertaken. The speciation results indicated that both Chromium (VI) and Chromium (III) were below the respective LORs in all samples. These findings suggest that the elevated total chromium concentrations are likely attributable to environmentally stable forms not associated with human health risk.
BTEXN	BTEXN was reported in soil samples by the laboratory at concentrations below LOR and below adopted SAC.
TRH	TRHs concentrations were reported by the laboratory in soil samples at levels below LOR and below adopted SAC.
РАН	Concentrations of relevant PAHs were reported in analysed soil samples at levels below LOR and below adopted SAC.
OCP / OPP	Concentrations of OCP and OPP in analysed soil samples were reported below LOR and below the respective SAC.
PCB	PCB (total) was reported in analysed soil samples by the laboratory at concentrations below LOR and below the adopted SAC.
Asbestos (identification in soil)	The analytical laboratory reported that no asbestos was detected at the reporting limit of 0.1 g/kg in analysed soils samples.
	Trace analysis by the laboratory did not detect asbestos in soil samples.

Table 14: Summary of soil analytical results compared to assessment criteria.

7.5 Discussion

The analytical results from soil sampling were assessed against the adopted site assessment criteria (SAC) for residential land use (HIL-A), consistent with the proposed childcare development.

With the exception of total chromium, all reported concentrations of COPC, including heavy metals, pesticides, petroleum hydrocarbons (BTEXN, TRH), PAHs, PCBs, and asbestos, were below laboratory limits of reporting or relevant SAC.

Total chromium was reported at concentrations exceeding the HIL for Chromium (VI) in all soil samples. However, chromium speciation testing confirmed that both Chromium (VI) and Chromium (III) were below laboratory detection limits. These findings suggest that the elevated total chromium concentrations are likely attributable to environmentally stable, non-bioavailable forms of chromium that do not pose a risk under the proposed land use. As such, no further assessment or management of chromium is considered necessary.

No asbestos, anthropogenic fill, odours, staining, or other field indicators of contamination were observed during intrusive works. The overall findings are consistent with the conceptual site model, which identified only low potential for contamination associated with former agricultural land use.

8 **Conclusions and Recommendations**

MA has completed a DSI within proposed Lot 4 of 3 Memory Avenue, Crookwell, NSW (the IA), to assess potential land contamination risk in support of a future childcare development DA.

The investigation included targeted soil sampling and laboratory analysis to assess potential contamination risks associated with historical agricultural land use. With the exception of total chromium, all COPC were reported at concentrations below the adopted site assessment criteria (SAC) for residential land use (HIL-A).

Total chromium concentrations exceeded the Chromium (VI) HIL in all samples; however, chromium speciation confirmed that both Chromium (VI) and Chromium (III) were below laboratory detection limits. This indicates that the elevated total chromium is attributable to environmentally stable, low-risk forms of chromium not relevant to health-based criteria.

Based on the results of this assessment, MA consider that the IA is suitable for the proposed childcare development with no further investigation, remediation or management required. This report provides the consent authority with data and analysis sufficient to consider whether the land is contaminated [s 4.6 (1) (a)] and to conclude that the land is suitable for the intended use without the need for remediation or ongoing management considerations with regards to contaminated land.

We recommend that the following works are completed so that contamination risks remain low and acceptable during, and post construction works:

- Preparation and implementation of a Construction Environmental Management Plan (CEMP) for the construction phase of the project. The CEMP is to include protocols to address any unexpected finds which may be encountered during targeted investigation works for footings and other potential targeted minor excavation as part of the proposed development.
- If required, undertake a formal waste classification assessment to ensure that any spoil generated during development work is classified and disposed of in accordance with NSW EPA (2014) Waste Classification Guidelines.

9 Limitations Statement

This DSI was undertaken in line with current industry standards.

It is important, however, to note that no land contamination study can be a complete and exhaustive characterisation of a site, nor can it be guaranteed that any assessment shall identify and characterise all areas of potential contamination or all past potentially contaminating land uses. Therefore, this report should not be read as a guarantee that no contamination shall be found on the IA. Should material be exposed in future which appears to be contaminated or inconsistent with natural site soils, additional testing may be required to determine the implications for the site.

Martens & Associates Pty Ltd has undertaken this assessment for the purposes of the current development proposal. No reliance on this report should be made for any other investigation or proposal. Martens & Associates Pty Ltd accepts no responsibility and provides no guarantee regarding the characteristics of areas of the site not specifically studied in this investigation.

10 References

- A.J. Johnston, M.M. Scott, J.J. Watkins, L. Sherwin, A.Y.E. Warren, D.J. Pogson, R.A. Glen & J.J. Vassallo (2013). Crookwell 1:100 000 Geological Sheet 8729. Geological Survey of New South Wales, Maitland.
- Australian Standard (2017) AS1726:2017, Geotechnical IA Investigations. SAI Global Limited, Sydney.
- BoM (2025) Australian Groundwater Insight Portal and Australian Groundwater Dependent Ecosystems Atlas. Bureau of Meteorology, Canberra. Available at <u>http://www.bom.gov.au/water/groundwater/index.shtml</u>, accessed 12 May 2025.
- Faubourg (2025) Proposed Childcare Development at 3 Memory Ave, Crookwell, Drawing No. SK00-SK02 and SK10, Document Number 100330, Received 14 April 2025.
- GSNSW (2025) MinView. Geological Survey of New South Wales, Department of Regional NSW, Maitland. Available at: <u>https://minview.geoscience.nsw.gov.au/</u>, accessed 12 May 2025.
- Martens and Associates Pty Ltd (2025) *Preliminary Site Investigation, Proposed Residential Subdivision: 3 Memory Avenue, Crookwell NSW*, document reference P2410601JR02V01, dated 28 April 2025 (MA, 2025).
- NEPC (2013) Schedule B2: Guideline on IA Characterisation. National Environment Protection (Assessment of IA Contamination) Measure (NEPM), as amended in May 2013.
- NSW DEC (2007) Guidelines for the Assessment and Management of Groundwater Contamination. DEC2007/144, March 2007.
- NSW DPE (2025) eSPADE 2.2 Spatial Viewer System. NSW Department of Planning and Environment. Available at: <u>https://www.environment.nsw.gov.au/eSpade2</u> <u>Webapp/</u>, accessed 12 May 2025.
- NSW DPIE (2025) Search Engine for Environmental Data (SEED) website. NSW Department of Planning, Industry and Environment, Sydney. Available at <u>https://geo.seed.nsw.gov.au/Public_Viewer/index.html?viewer=Public_Viewer&lo</u> <u>cale=en-AU</u>, accessed 12 May 2025.
- NSW DUAP (1998) Managing Land Contamination Planning Guidelines: SEPP 55 Remediation of Land. Department of Urban Affairs and Planning / EPA, 1998.
- NSW EPA (2015) Guidelines on the Duty to Report Contamination under the Contaminated Land Management Act 1997. EPA 2015/0164, September 2015.
- NSW EPA (2017) Contaminated Land Management: Guidelines for the NSW IA Auditor Scheme. EPA 2017P0269, October 2017.

- NSW EPA (2020) Contaminated Land Guidelines: Consultants Reporting on Contaminated Land. EPA 2020P2233, April 2020.
- NSW EPA (2022) Contaminated Land Guidelines: Sampling design part 1 application. EPA 2022P3915, NSW Environmental Protection Authority, Parramatta.
- SDG (2024), Detail and Level Survey of Lot 2 in DP702788, 3 Memory Ave Crookwell, SDG Pty Ltd, Reference 9293, Issue C, Survey Date 17 December 2024.
- SS DCS (2025) Historical Imagery Viewer. Spatial Service NSW Department of Customer Service. Available at: <u>https://portal.spatial.nsw.gov.au/portal/apps/webapp</u> <u>viewer/</u>, accessed 12 May 2025.
- State Environmental Planning Policy (Educational Establishments and Child Care Facilities) 2017.
- State Environmental Planning Policy (Resilience and Hazards) 2021.
- Upper Lachlan Development Control Plan 2010
- Upper Lachlan Local Environmental Plan 2010
- WaterNSW (2025) Real-Time Water Database. Department of Planning and Environment. Available at: <u>https://realtimedata.waternsw.com.au/water.stm</u>, accessed 12 May 2025.

Appendix A – Maps

0 10 20 30 40 50 m

1:1250 @ A3

Viewport A

Notes: - Aerial from Nearmap (2025) - Topography from NSW Clip and Ship (2025)

Map Title / Figure: Site Overview

Map 01 3 Memory Avenue, Crookwell, NSW 2583 Childcare Detailed Site Investigation BlueSox Pty Ltd 08/05/2025

Map Site Project Sub-Project Client Date

0 6 12 18 24 30 m

1:500 @ A3

Viewport B

Notes: - Aerial from Nearmap (2025) - Topography from NSW Clip and Ship (2025)

7856

Map Title / Figure: Investigation Area Overview

Map 02 3 Memory Avenue, Crookwell, NSW 2583 Childcare Detailed Site Investigation BlueSox Pty Ltd 08/05/2025

Map Site Project Sub-Project Client Date

0 6 12 18 24 30 m

1:500 @ A3 Viewport B Notes: - Aerial from Nearmap (2025)

Map Title / Figure:

Map
Map
Site
Project
Sub-Project
Client
Date

Map 03 3 Memory Avenue, Crookwell, NSW 2583 Childcare Detailed Site Investigation BlueSox Pty Ltd 08/05/2025

0 6 12 18 24 30 m

1:500 @ A3 Viewport B Notes: - Aerial from Nearmap (2025)

Environment | Water | Geotechnics | Civil | Projects

Map Title / Figure: Sampling Locations

Map Site Project Sub-Project Client Date

Map 04 3 Memory Avenue, Crookwell, NSW 2583 Childcare Detailed Site Investigation BlueSox Pty Ltd 08/05/2025

Appendix B – Development and Survey Plans

Proposed Childcare Development at 3 Memory Ave, Crookwell

Issue A

Site Plan 100330 SK01 Issue A Scale 1:500

Proposed Childcare Development at 3 Memory Ave, Crookwell

 \triangleright

12.	11.	10.	<u>9</u>	<u></u>	7.	<u>0</u>	'n	4	ω	<u>.</u>	1.
Outdoor Storage 2.4m High	Cot area	Day bed storage	Storage 1.5m High	Adult Hand Basin	Kitchenette	Crafts Sink	Bottle Prep	Bench Type Nappy Change	Bench Type Baby Bath	Kids Toilet	Kids Hands Basin

GENERAL NOTES THE OVERALL SURVEY OF LOT 2 DP702788 SHOWN IS FROM A SURVEY BY SOUTHERN CROSS CONSULTING SURVEYORS DATED 25/11/2022 REF 24884C.

SHEET 1 OF 2 SHEETS

SDG HAS SURVEYED THE AREAS WITHIN DIAGRAMS A AND B AND THE DRAINAGE INFORMATION SHOWN ALONG MCINTOSH ROAD ONLY. THE ORIGINAL 3D DTM MESH BY SOUTHERN CROSS CONSULTING SURVEYORS WITHIN THE AREAS OF DIAGRAMS A AND B HAS BEEN

DELETED AND THE SDG 3D MESH HAS BEEN SPLICED IN. SDG HAS NOT CHECKED THE OVERALL SURVEY BY SOUTHERN CROSS CONSULTING SURVEYORS.

ONLY TREES GREATER THAN 3.5 METRES IN HEIGHT ARE SHOWN ON THIS PLAN AND THEIR POSITIONS ARE DIAGRAMMATIC ONLY AND MAY REQUIRE ADDITIONAL SURVEY WHERE CRITICAL TO DESIGN.

CONTOURS ARE INDICATIVE AT GROUND FORM ONLY. SPOT LEVELS ONLY SHOULD BE USED FOR CALCULATIONS OF QUANTITIES WITH CAUTION. LEVELS ARE ON AUSTRALIAN HEIGHT DATUM (AHD).

ALL SETOUT LEVELS MUST BE REFERRED TO THE BENCH MARK SHOWN ON THIS PLAN.

BOUNDARY NOTES

A BASIC BOUNDARY SURVEY HAS BEEN DONE SUITABLE FOR DA LODGEMENT PURPOSES.

BOUNDARIES HAVE NOT BEEN MARKED.

SURVEY INFORMATION NOTES

THE ORIGIN OF COORDINATES COMES FROM PM35953 E727183.306 N6185234.235 CLASS B POSITIONAL UNCERTAINTY (PU) 0.02 (MGA2020) ADOPTED FROM SCIMS DATED 19/12/2024.

THE ORIGIN OF LEVELS COMES FROM PM35953 RL904.891 CLASS LB POSITIONAL UNCERTAINTY (PU) 0.41 ADOPTED FROM SCIMS DATED 19/12/2024.

THE ORIENTATION OF THIS PLAN IS MGA NORTH WHICH HAS BEEN DETERMINED BY A COORDINATE JOIN BETWEEN PM35953 AND PM61189. CERTIFICATE OF TITLE NOTES

THE FOLLOWING INFORMATION RELATES TO THE RESPECTIVE CERTIFICATE OF TITLE OF EACH LOTS:

> - LOT 2 IN DP702788 (CT EDITION 14 DATED 17/04/2024 SEARCH DATE 06/01/2025) - AFFECTED BY: - EASEMENT FOR WATER SUPPLY APPURTANANT TO THE LAND DESCRIBED (DP614271) - COVENANT (V236534)

COVENANTS AND RESTRICTIONS NOTED ON THE TITLE HAVE NOT BEEN INVESTIGATED. THESE SHOULD BE INVESTIGATED PRIOR TO DESIGN TO ENSURE ANY FUTURE DEVELOPMENT COMPLIES.

SERVICES NOTES

ONLY THOSE SERVICES VISIBLE AT THE TIME OF SURVEY HAVE BEEN LOCATED AND ARE QUALITY LEVEL A AS DEFINED BY AS 5488.1:2022.

UNDERGROUND SERVICES HAVE BEEN PLOTTED WITHIN THE AREAS OF DIAGRAMS A AND B ONLY FROM 'DIAL-BEFORE'YOU-DIG' PLANS, ARE QUALITY LEVEL D AS DEFINED BY AS 5488.1:2022 AND ARE ONLY CURRENT AT THE DATE OF SEARCH.

ALL RELEVANT AUTHORITIES MUST BE CONTACTED TO DETERMINE THE FULL EXTENT OF SERVICES PRIOR TO ANY PLANNING OR WORKS NEAR THE SITE.

LEGEND

-	
TAG	DESCRIPTION
BB	BOTTOM OF BANK
вк	BACK OF KERB
CL	CENTERLINE OF ROAD
COM	COMMUNICATIONS PIT
CPIL	COMMUNICATIONS PILLAR
D.S.H	DIAMETER, SPREAD, HEIGHT
EB	EDGE OF BITUMENT
ELP	ELECTRICITY PILLAR
EOG	EDGE OF GRAVEL
GUT	GUTTER OF KERB
HYD	HYDRANT
LIP	LIP OF KERB
PP	POWER POLE
SMH	SEWER MANHOLE
SS	STREET SIGN
SV	STOP VALVE
ТВ	TOP OF BANK

© COPYRIGHT

THIS PLAN IS NOT TO BE USED FOR ANY PURPOSE OTHER THAN ITS ORIGINAL INTENTION AND REMAINS THE PROPERTY OF SDG. THIS PLAN CANNOT BE REPRODUCED, COPIED OR DIGITALLY TRANSFERRED (IN WHOLE OR PART) WITHOUT PRIOR WRITTEN PERMISSION OF SDG.

PROJECT:

DETAIL AND LEVEL SURVEY OF LOT 2 IN DP702788

3 MEMORY AVENUE CROOKWELL

CLIENT: OLIVER WEHBE FILE: 9293-Detail-Issue A-3 Memory Avenue Crookwell.dwg

LGA: UPPER LACHLAN SHIRE						
REF: 9293	CONTOURS: 0.5m					
ISSUE: A	DATUM: AHD					
SURVEY DATE: 17/12/2024	AZIMUTH: MGA2020					
SCALE: 1:400	SHEET 1 OF 2 SHEETS					
	-					

SDG Pty Ltd abn 85 213 523 621 Suite 1, 3 Railway Street, Baulkham Hills NSW 2153 t: (02) 9630 7955 w: sdg.net.au Liability limited by a scheme approved under Professional Standards Legislation

Appendix C – Groundwater Bore Information

All Groundwater Site Details home help contact customise ALL GROUNDWATER MAP State Overview All data times are Eastern Standard Time State Overview Map Info **Rivers and Streams** Redgrou + favourites search download sites find a site Groundwater Bores Groundwater works Real Time Data - Rivers And Streams Telemetered bores ▲ Logged bores **Daily River Reports** Manual bores Daily River Reports Monitoring Bore Types Dams Coastal Sands Fractured Rock favourites search download sites find a site **Porous Rock** Great Artesian Basin DA Rd Discontinued Groundwater (Telemetered data) favourites search download sites find a site Real Time Data - Bores D All Groundwater Site details O Sydney Vintage Car Restorations search download sites find a site search by licence All Groundwater Map clifton St Meteorology The Crookwell Nursery 💽 favourites search download sites find a site 0 100 m Hunter River Salinity Trading Scheme Goodle Hunter River Salinity Trading Scheme 727555, 6185053, 55 Scale = 1 : 3385

GW053590 GW702705 Gordon Rd GW703243 Gordon Pa Soude Laggan Rd Wolseley Rd Memory Ave Memory Ave Wolseley Rd 5 50 Evans Bodyworks Crookwell GW702814 0 Rich McIntosh Rd Crookwell Skate There are 5 sites within 500 metres of the selected point. × GW702814 GW703243 Rd GW053590 GW702705 GW058774 Laggan saleyards Viewhaven Lodge 🞖 5

bookmark this page

GW702705

Licence:	70BL231195	Licence Status:	CONVERTED
		Authorised Purpose(s): Intended Purpose(s):	DOMESTIC DOMESTIC
Work Type:	Bore		
Work Status:	Supply Obtained		
Construct.Method:	Rotary Air		
Owner Type:	Private		
Commenced Date: Completion Date:	04/07/2006	Final Depth: Drilled Depth:	30.00 m 30.00 m
Contractor Name:	Bungendore Water Bores		
Driller:	Daniel Robert Hill		
Assistant Driller:	Gerrard Hill		
Property: GWMA: GW Zone:	LOT 9 Gordon St CROOKWELL 2583 NSW	Standing Water Level (m): Salinity Description: Yield (L/s):	3.000 3.375

Site Details

Site Chosen By:

		Form A: Licensed:	County GEORGIANA GEORGIAN	Parish KIAMMA KIAMMA	Cadastre 9/4/1809 Whole Lot 9/4/1809
Region:	70 - Lachlan	CMA Map:	8729-S		
River Basin: Area/District:	412 - LACHLAN RIVER	Grid Zone:		Scale:	
Elevation: Elevation Source:	0.00 m (A.H.D.) Unknown	Northing: Easting:	6185655.000 727226.000	Latitude: Longitude:	34°26'44.3"S 149°28'23.7"E
GS Map:	-	MGA Zone:	55	Coordinate Source:	GPS - Global

Construction

Negative depths indicate Above Ground Level; C-Cemented; SL-Slot Length; A-Aperture; GS-Grain Size; Q-Quantity; PL-Placement of Gravel Pack; PC-Pressure Cemented; S-Sump; CE-Centralisers

Hole	Pipe	Component	Туре	From (m)	To (m)	Outside Diameter (mm)	Inside Diameter (mm)	Interval	Details
1		Hole	Hole	0.00	30.00	200			Rotary Air
1		Annulus	Waterworn/Rounded	0.00	30.00	200	160		Graded, Q:1.000m3, PL:Poured/Shovelled
1	1	Casing	Pvc Class 9	-0.40	30.00	160	152		Driven into Hole, Screwed and Glued, S: 24.00-30.00m
1	1	Opening	Slots - Vertical	12.00	30.00	160		0	Sawn, PVC Class 9, Screwed and Glued, SL: 120.0mm, A: 2.00mm

Water Bearing Zones

From (m)	To (m)	Thickness (m)	WBZ Туре	S.W.L. (m)	D.D.L. (m)	Yield (L/s)	Hole Depth (m)	Duration (hr)	Salinity (mg/L)
12.00	14.00	2.00	Unknown	3.00		0.12		00:15:00	
16.00	18.00	2.00	Unknown	3.00		0.50		00:15:00	
22.00	24.00	2.00	Unknown	3.00		2.75		01:30:00	

Drillers Log

From (m)	To (m)	Thickness (m)	Drillers Description	Geological Material	Comments

0.00	1.50	1.50	Soil & Clay, light brown	Soil	
1.50	6.00	4.50	Basalt, hard, black	Basalt	
6.00	12.00	6.00	Basalt, light brown, soft	Basalt	
12.00	30.00	18.00	Volcanic, blue, ironstone bands, brown	Volcanic	

Remarks

04/07/2006: Form A Remarks: Nat Carling, 18-Aug-2006.

*** End of GW702705 ***

GW702814

Licence:	70WA609251	Licence Status:	CURRENT
		Authorised Purpose(s): Intended Purpose(s):	DOMESTIC,STOCK STOCK, DOMESTIC
Work Type:	Bore		
Work Status:	New Bore		
Construct.Method:	Rotary Air		
Owner Type:	Private		
Commenced Date: Completion Date:	02/12/2006	Final Depth: Drilled Depth:	49.00 m 49.00 m
Contractor Name:	Watermin Drillers Pty Ltd		
Driller:	Allan Ross Jones		
Assistant Driller:			
Property:	N/A 2 Memory Ave CROOKWELL	Standing Water Level	9.000
GWMA: GW Zone:	2000 11011	Salinity Description: Yield (L/s):	3.791

Site Details

Site Chosen By:

	County	Parish	Cadastre
	Form A: GEORGIANA	KIAMMA	2/833094
	Licensed: GEORGIAN	KIAMMA	Whole Lot 2//833094
Region: 70 - Lachlan	СМА Мар:		
River Basin: - Unknown Area/District:	Grid Zone:	:	Scale:
Elevation: 0.00 m (A.H.D.)	Northing: 6185382.000	Lat	itude: 34°26'52.9"S
Elevation Source: Unknown	Easting: 727581.000	Long	itude: 149°28'37.9"E

GS Map: -

Construction

Negative depths indicate Above Ground Level; C-Cemented; SL-Slot Length; A-Aperture; GS-Grain Size; Q-Quantity; PL-Placement of Gravel Pack; PC-Pressure Cemented; S-Sump; CE-Centralisers

MGA Zone: 55

Hole	Pipe	Component	Туре	From (m)	To (m)	Outside Diameter	Inside Diameter	Interval	Details
				(,	(,	(mm)	(mm)		
1		Hole	Hole	0.00	49.00	150			Rotary Air
1		Annulus	Waterworn/Rounded	0.00	49.00				Graded
1	1	Casing	Pvc Class 9	-0.30	49.00	140	131		Seated on Bottom, Glued
1	1	Opening	Slots - Horizontal	21.00	22.00	140		0	Casing - Machine Slotted, Aluminium, Glued, SL: 60.0mm, A: 2.00mm
1	1	Opening	Slots - Horizontal	30.00	31.00	140		0	Casing - Machine Slotted, Aluminium, Glued, SL: 60.0mm, A: 2.00mm
1	1	Opening	Slots - Horizontal	40.00	42.00	140		0	Casing - Machine Slotted, Aluminium, Glued, SL: 60.0mm, A: 2.00mm

Water Bearing Zones

From (m)	To (m)	Thickness (m)	WBZ Туре	S.W.L. (m)	D.D.L. (m)	Yield (L/s)	Hole Depth (m)	Duration (hr)	Salinity (mg/L)
21.00	21.50	0.50	Unknown	9.00		0.19			
30.00	31.50	1.50	Unknown			0.44			
41.00	42.00	1.00	Unknown			3.16			

4

Coordinate Source: Unknown

Drillers Log

From	То	Thickness	Drillers Description	Geological Material	Comments
(m)	(m)	(m)			
0.00	1.00	1.00	topsoil	Topsoil	
1.00	7.00	6.00	clay	Clay	
7.00	20.00	13.00	soft shale	Invalid Code	
20.00	25.00	5.00	basalt	Basalt	
25.00	32.00	7.00	clay	Clay	
32.00	49.00	17.00	basalt	Basalt	

*** End of GW702814 ***

GW703243

Licence:	70BL231550	Licence Status:	CONVERTED
		Authorised Purpose(s): Intended Purpose(s):	DOMESTIC STOCK, DOMESTIC
Work Type:	Bore		
Work Status:	Supply Obtained		
Construct.Method:	Rotary Air		
Owner Type:	Private		
Commenced Date: Completion Date:	18/02/2007	Final Depth: Drilled Depth:	65.00 m 65.00 m
Contractor Name:	Watermin Drillers Pty Ltd		
Driller:	Allan Ross Jones		
Assistant Driller:	E. Dixon		
Property: GWMA: GW Zone:	LOT 20 Gordon Rd CROOKWELL 2583 NSW	Standing Water Level (m): Salinity Description: Yield (L/s):	12.000

Site Details

Site Chosen By:

	County	Parish	Cadastre
	Form A: GEORGIANA	KIAMMA	20/3/1809
	Licensed: GEORGIAN	KIAMMA	Whole Lot 20/3/1809
Region: 70 - Lachlan	СМА Мар:		
River Basin: - Unknown Area/District:	Grid Zone:	Sca	ıle:
Elevation: 0.00 m (A.H.D.)	Northing: 6185584.000	Latitu	de: 34°26'46.5"S
Elevation Source: Unknown	Easting: 727432.000	Longitu	de: 149°28'31.9"E

GS Map: -

Construction Negative depths indicate Above Ground Level; C-Cemented; SL-Slot Length; A-Aperture; GS-Grain Size; Q-Quantity; PL-Placement of Gravel Pack; PC-Pressure Cemented; S-Sump; CE-Centralisers

MGA Zone: 55

Pipe	Component	Туре	From (m)	To (m)	Outside Diameter (mm)	Inside Diameter (mm)	Interval	Details		
	Hole	Hole	0.00	65.00	160	()		Rotary Air		
	Annulus	Waterworn/Rounded	0.00	65.00	160	140		Graded		
1	Casing	Pvc Class 9	-0.30	65.00	140	129		Seated on Bottom, Glued		
1	Opening	Slots - Horizontal	25.00	51.00	140		0	Casing - Machine Slotted, PVC Class 9,		
	Pipe	Pipe Component Hole Annulus Casing Opening	Pipe Component Type Hole Hole Annulus Waterworn/Rounded Casing Pvc Class 9 Opening Slots - Horizontal	PipeComponentTypeFrom (m)HoleHole0.00AnnulusWaterworn/Rounded0.001CasingPvc Class 9-0.301OpeningSlots - Horizontal25.00	PipeComponentTypeFrom (m)To (m)HoleHole0.0065.00AnnulusWaterworn/Rounded0.0065.001CasingPvc Class 9-0.3065.001OpeningSlots - Horizontal25.0051.00	PipeComponentTypeFrom (m)To (m)Outside Diameter (mm)HoleHole0.0065.00160AnnulusWaterworn/Rounded0.0065.001601CasingPvc Class 9-0.3065.001401OpeningSlots - Horizontal25.0051.00140	PipeComponentTypeFrom (m)To (m)Outside piameter (mm)Inside piameter (mm)HoleHole0.0065.00160140AnnulusWaterworn/Rounded0.0065.001601401CasingPvc Class 9-0.3065.001401291OpeningSlots - Horizontal25.0051.00140	PipeComponentTypeFrom (m)To (m)Outside Diameter (mm)Inside Diameter <b< td=""></b<>		

Water Bearing Zones

From (m)	To (m)	Thickness (m)	WBZ Туре	S.W.L. (m)	D.D.L. (m)	Yield (L/s)	Hole Depth (m)	Duration (hr)	Salinity (mg/L)
25.00	25.10	0.10	Unknown	12.00					
48.00	48.10	0.10	Unknown						
50.00	51.00	1.00	Unknown			2.27			

Drillers Log

From (m)	To (m)	Thickness (m)	Drillers Description	Geological Material	Comments	
0.00	1.00	1.00	topsoil	Topsoil		

9

Coordinate Source: Unknown

1.00	8.00	7.00	clay	Clay	
8.00	24.00	16.00	soft shale	Shale	
24.00	65.00	41.00	basalt	Basalt	

Remarks

18/02/2007: Form A Remarks: Entered by H. Lester

*** End of GW703243 ***

GW053590

GW053590				
Licence:	70WA608043	Licence Status:	CURRENT	
		Authorised Purpose(s): Intended Purpose(s):	DOMESTIC,STOCK IRRIGATION	
Work Type:	Bore			
Work Status:				
Construct.Method:	Rotary Air			
Owner Type:	Private			
Commenced Date: Completion Date:	01/06/1981	Final Depth: Drilled Depth:	22.30 m 22.30 m	
Contractor Name:	(None)			
Driller:				
Assistant Driller:				
Property:	N/A NSW	Standing Water Level (m):		
GWMA: GW Zone:		Salinity Description: Yield (L/s):	Good	
Site Details				
Site Chosen By:				
		County Form A: GEORGIANA Licensed: GEORGIAN	Parish KIAMMA KIAMMA	Cadastre L12 (SEC 4) Whole Lot 23/4/1809

Region: 70 - Lachlan	CMA Map: 8729-S	
River Basin: 412 - LACHLAN RIVER Area/District:	Grid Zone:	Scale:
Elevation: 0.00 m (A.H.D.)	Northing: 6185683.000 Easting: 727292.000	Latitude: 34°26'43.4"S Longitude: 149°28'26.3"E

MGA Zone: 55

Coordinate Source: GD., ACC. MAP

GS Map: -

Construction
Negative depths indicate Above Ground Level; C-Cemented; SL-Slot Length; A-Aperture; GS-Grain Size; Q-Quantity; PL-Placement of Gravel Pack;
PC-Pressure Cemented; S-Sump; CE-Centralisers

Hole	Pipe	Component	Туре	From (m)	To (m)	Outside Diameter (mm)	Inside Diameter (mm)	Interval	Details
1	1	Casing	Welded Steel	-0.30	22.30	165			Seated on Bottom
1	1	Opening	Slots - Vertical	16.20	22.30	165		1	Oxy-Acetylene Slotted, A: 2.00mm

Water Bearing Zones

From (m)	To (m)	Thickness (m)	WBZ Туре	S.W.L. (m)	D.D.L. (m)	Yield (L/s)	Hole Depth (m)	Duration (hr)	Salinity (mg/L)
21.30	21.60	0.30	Fractured			2.53			

Drillers Log

From	То	Thickness	Drillers Description	Geological Material	Comments
(m)	(m)	(m)			
0.00	0.30	0.30	Topsoil	Topsoil	
0.30	3.00	2.70	Clay	Clay	
3.00	15.20	12.20	Basalt	Basalt	
15.20	22.30	7.10	Basalt Decomposed	Basalt	

01/11/1983: LOT 12 SECTION 4 CROOKWELL

*** End of GW053590 ***

GW058774

Licence: 70BL123928

Licence Status: CONVERTED

Authorised Purpose(s): DOMESTIC,STOCK Intended Purpose(s): STOCK, DOMESTIC

Work Type: Bore Work Status: Supply Obtained Construct.Method: Rotary Owner Type: Private

Commenced Date: Completion Date: 01/02/1983

Contractor Name: (None)

Driller:

Assistant Driller:

Property: KILOREN NSW

GWMA: GW Zone:

Site Details

Site Chosen By:

Drilled Depth:

Final Depth: 30.50 m

Standing Water Level (m): Salinity Description: Domestic Yield (L/s):

County Form A: GEORGIANA Licensed: GEORGIAN

CMA Map: 8729-S

Grid Zone:

Parish KIAMMA KIAMMA Cadastre 173 Whole Lot

Region: 70 - Lachlan River Basin: 412 - LACHLAN RIVER Area/District:

Elevation: 0.00 m (A.H.D.) Elevation Source: (Unknown)

GS Map: -

Northing: 6184845.000 Easting: 727501.000

MGA Zone: 55

Latitude: 34°27'10.4"S Longitude: 149°28'35.3"E

Coordinate Source: GD., ACC. MAP

Scale:

*** End of GW058774 ***

Appendix D – Test Pit Logs

CLIENT	BI	lueSox	Pty Ltd			со	MMENCED	01/05/2025	COMPLETED	01/05/2025	REF	TP101
PROJEC	T D	etailed	Site Inv	esti	gation	LO	GGED	JH	CHECKED	ВМ		
SITE	3	Memor	y Avenı	ie, C	Crookwell NSW	GE	OLOGY	Crookwell Basalt	VEGETATION	Grass	PROJECT NO	. P2410601
EQUIPM	ENT	н	and Aug	ler		LO	NGITUDE	176362.124	RL SURFACE	920	DATUM	GDA2020 MGA56
OPERAT	OR	-				LAT	TTUDE	6182419.11	ASPECT	West	SLOPE	<2%
Drilling Method	Water	Elevatio Depth (I	(u u Graphic Log		Samples Jar Sample		Classification Code	Mate	rial Description		Comment	ts and Observations
Hand Auger	N/A Not ncounter ed				P2410601/TP101/0.0-0. DUP01	1+	ML	Clayey	/ SILT: light brown.		Trace rootlets. No c ACM, r	odour, no staining, no observed to anthropogenics.
								TP101 Terr	ninated at 0.2m			
				E	XCAVATION LOG TO BE	REA	, IN CONJUI	NCTION WITH ACCOM	PANYING REPORT		EVIATIONS	
Cr	na	ar	te	n	S	ı	MA Suite 201, 2 Phone nail@marten	RTENS & ASSOCIATE: 0 George St. Homsby, N : (02) 9476 9999 Fax: (0 is.com.au WEB: http://v	S PTY LTD NSW 2077 Australia 02) 9476 8767 www.martens.com.a	Engin	eering TESTPIT	Log - -

CLIENT	B	lueSox F	Pty Ltd		со	MMENCED	01/05/2025	COMPLETED	01/05/2025	REF	TP102
PROJECT	r D	etailed S	ite Invest	tigation	LO	GGED	JH	CHECKED	BM		
SITE	3	Memory	Avenue,	Crookwell NSW	GE	OLOGY	Crookwell Basalt	VEGETATION	Grass	PROJECT NO.	P2410601
EQUIPME	ENT	На	nd Auger		LO	NGITUDE	176340.867	RL SURFACE	919	DATUM	GDA2020 MGA56
OPERATO	DR	-			LAT	TITUDE	6182419.2	ASPECT	West	SLOPE	<2%
Drilling Method	Water	Elevation Depth (m	Graphic Log	Samples Jar Sample		Classification Code	Mate	erial Description		Comments and Observations	
Hand Auger	N/A Not counter ed			P2410601/TP102/0.0-0	.1	- ML	Claye	y SILT: light brown.		Trace rootlets. No o ACM, n	dour, no staining, no observed o anthropogenics.
							TP102 Terminated at	t 0.2m (on natural r	ock)		
Cn		art	er	EXCAVATION LOG TO BE	REAI	D IN CONJU MA Suite 201, 2 Phone mail@marter	NCTION WITH ACCOM RTENS & ASSOCIATE 0 George St. Homsby, I : (02) 9476 9999 Fax: (I s.com.au WEB: http://v	IPANYING REPORT S PTY LTD NSW 2077 Australia 02) 9476 8767 www.martens.com.a	NOTES AND ABBRE	eering ESTPIT	Log -

CLIENT	E	BlueSc	ox Pt	y Ltd		со	MMENCED	01/05/2025	COMPLETED	01/05/2025	REF	TP103
PROJEC	ст с	Detaile	d Sit	te Inves	stigation	LO	GGED	JH	CHECKED	ВМ		
SITE	3	3 Mem	ory A	Avenue	, Crookwell NSW	GE	OLOGY	Crookwell Basalt	VEGETATION	Grass	PROJECT NO). P2410601
EQUIPM	1ENT		Han	d Auge	r	LO	NGITUDE	176347.121	RL SURFACE	919	DATUM	GDA2020 MGA56
OPERAT	FOR		-			LA	TITUDE	6182454.23	ASPECT	West	SLOPE	<2%
Drilling Method	Water	Eleva Depth	tion ı (m)	Graphic Log	Samples Jar Sample		Classification Code	Mate	erial Description		Commen	ts and Observations
Hand Auger	N/A Encounte ed	97			P2410601/TP103/0.1-0	.2	ML	Cla	yey SILT: brown.		Trace rootlets. No o ACM, r	odour, no staining, no observed no anthropogenics.
								TP103 Terminated at	t 0.3m (on natural r	ock)		
						- DEA			DANIVING DEPOS			
	_)			EXCAVATION LOG TO BE	REAI	D IN CONJUN	NCTION WITH ACCOM	IPANYING REPORT	NOTES AND ABE	neering	
C	n	ár	t	e	ns	I	Suite 201, 2 Phone mail@marten	0 George St. Homsby, I : (02) 9476 9999 Fax: (I s.com.au WEB: http://v	NSW 2077 Australia 02) 9476 8767 www.martens.com.a		TESTPI	-

CLIENT	Blu	ueSox Pt	y Ltd		со	MMENCED	01/05/2025	COMPLETED	01/05/2025	REF	TP104
PROJECT	De	tailed Si	te Investi	igation	LOC	GGED	JH	CHECKED	BM		
SITE	3 N	Memory A	Avenue, (Crookwell NSW	GE	OLOGY	Crookwell Basalt	VEGETATION	Grass	PROJECT NO	. P2410601
EQUIPMEN	IT	Han	d Auger		LOI	NGITUDE	176352.002	RL SURFACE	920	DATUM	GDA2020 MGA56
OPERATOR	र	-			LAT	ITUDE	6182436.01	ASPECT	West	SLOPE	<2%
Drilling Method Water	Mater	Elevation Depth (m)	Graphic Log	Samples Jar Sample		Classification Code	Mate	rial Description		Comment	s and Observations
Hand Auger	/A			P2410601/TP104/0.0-0	.1	ML	Clayey SILT: brown.			With rock fragmer observed AC	nts. No odour, no staining, no 2M, no anthropogenics.
							TP104 Terminated at	0.1m (on natural ro	ock)		
No Encou ec	lot nunter d										
	-		E	XCAVATION LOG TO BE	READ	D IN CONJUI		PANYING REPORT			100
(m	ra	rt	er	IS	r	MA Suite 201, 2 Phone nail@marter	11 ENS & ASSOCIATE 0 George St. Homsby, f : (02) 9476 9999 Fax: ((s.com.au WEB: http://v	SPTYLID NSW 2077 Australia 02) 9476 8767 vww.martens.com.a	u Engin	TESTPIT	LOG - -

CLIENT	B	lueSox	Pty Ltd			CON	MMENCED	01/05/2025	COMPLETED	01/05/2025	REF	TP105
PROJEC	тр	etailed	Site Inve	estigation		LOG	GED	JH	CHECKED	ВМ		
SITE	3	Memo	y Avenu	e, Crookwell N	SW	GEO	DLOGY	Crookwell Basalt	VEGETATION	Grass	PROJECT NO	P2410601
EQUIPM	ENT	н	and Aug	er		LON	IGITUDE	176341.908	RL SURFACE	919	DATUM	GDA2020 MGA56
OPERAT	OR	-				LAT	ITUDE	6182434.71	ASPECT	West	SLOPE	<2%
Drilling Method	Water	Elevatio Depth ((u u Graphic Log	Jar :	mples Sample		Classification Code	Mate	erial Description		Comment	s and Observations
Hand Auger	N/A Not ncounter ed			P2410601	/TP105/0.1-0.	2	ML	Claye	y SILT: light brown.		With rock fragmer observed AC	its. No odour, no staining, no M, no anthropogenics.
								TP105 Terminated a	t 0.2m (on natural r	ock)		
	\sim			EXCAVATION	LOG TO BE	READ	IN CONJUI		IPANYING REPORT		REVIATIONS	
Cr	na	ar	te	ns		n	MA Suite 201, 2 Phone nail@marten	RTENS & ASSOCIATE 0 George St. Homsby, l : (02) 9476 9999 Fax: (s.com.au WEB: http://v	S PTY LTD NSW 2077 Australia 02) 9476 8767 www.martens.com.a	Engin	eering TESTPIT	Log -

CLIENT	Blu	ueSox P	ty Ltd		со	MMENCED	01/05/2025	COMPLETED	01/05/2025	REF	TP106
PROJECT	De	etailed Si	ite Investi	igation	LO	GGED	JH	CHECKED	BM		
SITE	3 N	Memory	Avenue,	Crookwell NSW	GE	OLOGY	Crookwell Basalt	VEGETATION	Grass	PROJECT NO	. P2410601
EQUIPMEN	IT	Har	nd Auger		LOI	NGITUDE	176364.686	RL SURFACE	920	DATUM	GDA2020 MGA56
OPERATOR	२	-			LAT	ITUDE	6182428.74	ASPECT	West	SLOPE	<2%
Drilling Method	vvater	Elevation Depth (m)	Graphic Log	Samples Jar Sample		Classification Code	Mate	arial Description		Comment	s and Observations
/A Hand Auger	/A			P2410601/TP106/0.0-0	.1	ML	Clayey SILT: light brown.			With rock fragmer observed AC	nts. No odour, no staining, no DM, no anthropogenics.
							TP106 Terminated at	0.1m (on natural ro	ock)		
Ni Encor ei	lot sunter sd										
	7	1	E	EXCAVATION LOG TO BE	READ	D IN CONJU	NCTION WITH ACCOM	PANYING REPORT	NOTES AND ABBR	eviations	loa -
(m	Ya	art	er	IS	r	Suite 201, 2 Phone nail@marter	20 George St. Homsby, t e: (02) 9476 9999 Fax: ((ns.com.au WEB: http://w	NSW 2077 Australia 02) 9476 8767 www.martens.com.a		TESTPIT	

CLIENT	Blu	ueSox P	ty Ltd		со	MMENCED	01/05/2025	COMPLETED	01/05/2025	REF	TP107
PROJECT	De	etailed Si	ite Invest	igation	LO	GGED	JH	CHECKED	BM		
SITE	3 N	Memory	Avenue,	Crookwell NSW	GE	OLOGY	Crookwell Basalt	VEGETATION	Grass	PROJECT NO	. P2410601
EQUIPMEN	IT	Har	nd Auger		LOI	NGITUDE	176364.086	RL SURFACE	920	DATUM	GDA2020 MGA56
OPERATOR	२	-			LAT	ITUDE	6182438.83	ASPECT	West	SLOPE	<2%
Drilling Method	vvater	Elevation Depth (m)	Graphic Log	Samples Jar Sample	Classification Code		Mate	rial Description		Comment	s and Observations
/A Hand Auger	/A			P2410601/TP107/0.0-0	.1	ML	Clayey SILT: light brown.			With rock fragmer observed AC	nts. No odour, no staining, no DM, no anthropogenics.
							TP107 Terminated at	0.1m (on natural ro	ock)		
Ni Encor ei	lot sunter sd										
			E	EXCAVATION LOG TO BE	READ	D IN CONJU	NCTION WITH ACCOM	PANYING REPORT	NOTES AND ABBR	eviations	log -
(m	Ya	art	er	IS	r	Suite 201, 2 Phone nail@marter	20 George St. Homsby, 1 5: (02) 9476 9999 Fax: (0 1s.com.au WEB: http://v	NSW 2077 Australia 02) 9476 8767 www.martens.com.a		TESTPIT	

CLIENT	В	lueSo	c Pty Ltd			со	MMENCED	01/05/2025	COMPLETED	01/05/2025	REF	TP108
PROJECT	T D	etaileo	Site Inv	/esti	gation	LO	GGED	JH	CHECKED	ВМ		
SITE	3	Memo	ry Aven	ue, (Crookwell NSW	GE	OLOGY	Crookwell Basalt	VEGETATION	Grass	PROJECT NO	. P2410601
EQUIPME	ENT	ł	land Au	ger		LO	NGITUDE	176361.457	RL SURFACE	920	DATUM	GDA2020 MGA56
OPERATO	OR	-				LA	TITUDE	6182452.7	ASPECT	West	SLOPE	<2%
Drilling Method	Water	Elevat Depth	(u) Graphic Loa	-	Samples Jar Sample		Classification Code	Mate	arial Description		Comment	s and Observations
Hand Auger	N/A Not rcounter ed				P2410601/TP108/0.1-0	2	· ML	Claye	y SILT: light brown.		No odour, no sta an	ining, no observed ACM, no thropogenics.
								TP108 Terminated at	t 0.2m (on natural ro	ock)		
)		E	XCAVATION LOG TO BE	REA	D IN CONJUI	NCTION WITH ACCOM	IPANYING REPORT S PTY LTD	NOTES AND ABBR	reviations	loa -
Cn	na	ar	te	n	IS	I	Suite 201, 2 Phone mail@marten	0 George St. Homsby, 1 : (02) 9476 9999 Fax: (0 is.com.au WEB: http://w	NSW 2077 Australia D2) 9476 8767 www.martens.com.a		TESTPIT	

Appendix E – Data Quality Assessment

Data Quality Assessment

An assessment of the quality of data acquired by the investigation, compared to designated investigation data quality indicators (DQI) defined in Section 6.2, is provided in the table below.

Completeness			
Field Considerations	Target	Result	Pass Fail Comment
Critical locations in sampling, analysis, and quality plan (SAQP) sampled?	Yes	Yes	Pass
Critical samples in SAQP collected?	Yes	Yes	Pass
Sampling methods and equipment in SAQP used and complied with?	Yes	Yes	Pass
Sampling by experienced environmental consultant(s)?	Yes	Yes	Pass
Field documentation complete?	Yes	Yes	Pass
			Test pit logs are provided in Appendix D.
Chain of Custody (COC) complete?	Yes	Yes	Pass
Laboratory Considerations	Target	Result	Pass Fail Comment
Critical samples analysed according to SAQP?	Yes	Yes	Pass
Analysis of samples for COPC according to SAQP?	Yes	Yes	Pass
Appropriate laboratory analytical methods and LOR used by laboratory?	Yes	Yes	Pass
Sample Receipt Advice (SRA) and COC	Yes	Yes	Pass
complete?			SRA and COC are provided in Appendix H.
Sample extraction and holding times complied with?	Yes	Yes	Pass
Comparability			-
Field Considerations	Target	Result	Pass Fail Comment
Same SAQP used on each occasion?	Yes	Yes	Pass
Sampling by same environmental consultant(s)?	Yes	Yes	Pass
Climatic conditions conducive for sampling?	Yes	Yes	Pass
Same types of samples collected, handled, and preserved in same manner?	Yes	Yes	Pass

martens

Lab	oratory Considerations	Target	Result	Pass Fail Comment
San san	ne laboratory used for primary nple analysis?	Yes	Yes	Pass
San prir	ne analytical methods used by nary laboratory?	Yes	Yes	Pass
San Iabo	ne LOR adopted by primary pratory?	Yes	Yes	Pass
San ado	ne analytical measurement units pted?	Yes	Yes	Pass
Rep	presentativeness			
Fiel	d Considerations	Target	Result	Pass Fail Comment
Me	dia sampled according to SAQP?	Yes	Yes	Pass
All i	dentified media in SAQP sampled?	Yes	Yes	Pass
Min	. 10 % field duplicates collected and	Yes	Yes	Pass
ana	lysed?			>10% field duplicates collected.
Log	s / records for each sample collected?	Yes	Yes	Pass
				Test pit logs are provided in Appendix D.
Lab	oratory Considerations	Target	Result	Pass Fail Comment
San	nples analysed according to SAQP?	Yes	Yes	Pass
Pre	cision			
Pre Fiel	cision d Considerations	Target	Result	Pass Fail Comment
Pre Fiel	cision d Considerations P used and complied with?	Target Yes	Result Yes	Pass Fail Comment Pass
Pre Fiel SAC Fiel diff acce	cision d Considerations P used and complied with? d duplicate relative percentage erence (RPD) (%) values within eptance limits?	Target Yes Yes	Result Yes Yes	Pass Fail Comment Pass Pass
Pre Fiel SAC Fiel diffa acco	cision d Considerations QP used and complied with? d duplicate relative percentage erence (RPD) (%) values within eptance limits? No limit for analytical results <10 x LOR	Target Yes Yes	Result Yes Yes	Pass Fail Comment Pass Pass
Pre Fiel SAC Fiel diffu acco	cision d Considerations QP used and complied with? d duplicate relative percentage erence (RPD) (%) values within eptance limits? No limit for analytical results <10 x LOR 50% for analytical results 10-30 x LOR	Target Yes Yes	Result Yes Yes	Pass Fail Comment Pass Pass
Pre Fiel SAC Fiel diff acco	cision d Considerations P used and complied with? d duplicate relative percentage erence (RPD) (%) values within eptance limits? No limit for analytical results <10 x LOR 50% for analytical results 10-30 x LOR 30% for analytical results >30 x LOR	Target Yes Yes	Result Yes Yes	Pass Fail Comment Pass Pass
Pre Fiel SAC Fiel diffi acco • • • • • • • • • •	d Considerations d Considerations P used and complied with? d duplicate relative percentage erence (RPD) (%) values within eptance limits? No limit for analytical results <10 x LOR 50% for analytical results 10-30 x LOR 30% for analytical results >30 x LOR boratory Considerations	Target Yes Yes	Result Yes Yes Result	Pass Fail Comment Pass Pass Pass Pass Fail Comment
Pree Fiel SAC Fiel diffi acco • • • Lab acco	cision d Considerations QP used and complied with? d duplicate relative percentage erence (RPD) (%) values within eptance limits? No limit for analytical results <10 x LOR 50% for analytical results 10-30 x LOR 30% for analytical results >30 x LOR aomatory Considerations oratory duplicate RPD values within eptance limits?	Target Yes Yes Target	Result Yes Yes Result Yes	Pass Fail Comment Pass Pass Pass Fail Comment Pass
Pree Fiel SACC Fiel diffi accc • • • • Lab accc Accc	cision d Considerations QP used and complied with? d duplicate relative percentage erence (RPD) (%) values within eptance limits? No limit for analytical results <10 x LOR 50% for analytical results 10-30 x LOR 30% for analytical results >30 x LOR poratory Considerations oratory duplicate RPD values within eptance limits?	Target Yes Yes Target Yes	Result Yes Yes Result Yes	Pass Fail Comment Pass Pass Pass Fail Comment Pass
Pre Fiel SACC Fiel diffi accc • • • • Lab accc Accc Fiel	cision d Considerations P used and complied with? d duplicate relative percentage erence (RPD) (%) values within eptance limits? No limit for analytical results <10 x LOR 50% for analytical results 10-30 x LOR 30% for analytical results >30 x LOR oratory Considerations oratory duplicate RPD values within eptance limits? uracy d Considerations	Target Yes Yes Target Yes Target	Result Yes Yes Result Yes Result Result	Pass Fail Comment Pass Pass Pass Fail Comment Pass Pass Fail Comment
Pre Fiel SAC Fiel diffi acco • • • • Lab acco C C C C C C C C C C	cision d Considerations QP used and complied with? d duplicate relative percentage erence (RPD) (%) values within eptance limits? No limit for analytical results <10 x LOR 50% for analytical results 10-30 x LOR 30% for analytical results >30 x LOR 30% for analytical results >30 x LOR oratory Considerations oratory duplicate RPD values within eptance limits? uracy d Considerations	Target Yes Yes Target Yes Target Yes	Result Yes Yes Result Yes Result Yes	Pass Fail Comment Pass Pass Pass Fail Comment Pass Pass Fail Comment Pass Pass Fail Comment Pass Fail Comment
Pree Fiel SAC Fiel diffi acco • • • Lab acco Lab acco Fiel Lab acco (Ree	cision d Considerations QP used and complied with? d duplicate relative percentage erence (RPD) (%) values within eptance limits? No limit for analytical results <10 x LOR 50% for analytical results 10-30 x LOR 30% for analytical results >30 x LOR oratory Considerations oratory duplicate RPD values within eptance limits? uracy d Considerations oratory prepared trip spike(s) used analysed?	Target Yes Yes Target Yes Yes Yes	Result Yes Yes Result Yes Result Yes Yes	Pass Fail Comment Pass Pass Pass Fail Comment Pass Pass Fail Comment Pass Pass
Pree Fiel SACC Fiel diffi accc • • • • Lab accc Accc Fiel Lab and (Rec Trip	cision d Considerations QP used and complied with? d duplicate relative percentage erence (RPD) (%) values within eptance limits? No limit for analytical results <10 x LOR 50% for analytical results 10-30 x LOR 30% for analytical results >30 x LOR oratory Considerations oratory duplicate RPD values within eptance limits? uracy d Considerations oratory prepared trip spike(s) used analysed? coveries between 60% and 140%) blank(s) used and analysed?	Target Yes Yes Target Yes Yes Yes Yes	Result Yes Yes Result Yes Yes Yes Yes	Pass Fail Comment Pass Pass Pass Fail Comment Pass Pass Fail Comment Pass Pass Pass Pass Pass Pass

martens

Laboratory Considerations	Target	Result	Pass Fail Comment
Laboratory method blank(s) within acceptable limits?	Yes	Yes	Pass
Matrix spike recovery within acceptable limits?	Yes	Yes	Pass
Surrogate spike recovery within acceptable limits?	Yes	Yes	Pass
Laboratory control sample recovery within acceptable limits?	Yes	Yes	Pass

Appendix F – Summary Laboratory Results Tables

				Me	tals				Halogenated Benzenes	Other		Pesticides	
	, Arsenic	, Cadmium	, Chromium (III+VI)	, Copper	, Lead	, Mercury	, Nickel	Zinc	, Hexachlorobenzene	, Phosalone	Fenamiphos	, Mirex	, Parathion
	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
EQL	4	0.4	1	1	1	0.1	1	1	0.1	0.1	0.1	0.1	0.1
NEPM 2013 Table 1B(7) Management Limits in Res / Parkland, Coarse Soil													
NEPM 2013 Table 1A(3) Res A/B Soil HSL for Vapour Intrusion, Silt													
NEPM 2013 Table 1B(5) Generic EIL Urban Res & Public Open Space	100												
NEPM 2013 Table 1B(5) Site-Specific EIL Urban Res & Public Open Space			580 *(III)	220			220	590					
NEPM 2013 Table 1B(6) ESLs for Urban Res, Coarse Soil													
NEPM 2013 Table 1A(1) HILs Res A Soil	100	20	100 *(VI)	6,000	300	40	400	7,400	10			10	

Field ID	Date	Lab Report Number													
10601/TP101/0.00.1	01 May 2025	379564	<4	< 0.4	180	24	15	<0.1	44	44	<0.1	<0.1	<0.1	<0.1	<0.1
10601/TP102/0.00.1	01 May 2025	379564	<4	<0.4	170	26	15	<0.1	64	45	<0.1	<0.1	<0.1	<0.1	<0.1
10601/TP103/0.10.2	01 May 2025	379564	<4	<0.4	210	28	15	<0.1	66	47	<0.1	<0.1	<0.1	<0.1	<0.1
10601/TP104/0.00.1	01 May 2025	379564	<4	<0.4	190	27	14	<0.1	58	51	<0.1	<0.1	<0.1	<0.1	<0.1
10601/TP105/0.10.2	01 May 2025	379564	<4	<0.4	240	28	14	<0.1	51	42	<0.1	< 0.1	<0.1	<0.1	<0.1
10601/TP106/0.00.1	01 May 2025	379564	<4	<0.4	160	23	13	<0.1	47	43	<0.1	<0.1	<0.1	<0.1	<0.1
10601/TP107/0.00.1	01 May 2025	379564	<4	<0.4	220	27	15	<0.1	61	53	<0.1	<0.1	<0.1	<0.1	<0.1
10601/TP108/0.10.2	01 May 2025	379564	<4	<0.4	180	27	14	<0.1	53	42	<0.1	<0.1	<0.1	<0.1	<0.1

Statistics													
Number of Results	8	8	8	8	8	8	8	8	8	8	8	8	8
Number of Detects	0	0	8	8	8	0	8	8	0	0	0	0	0
Minimum Concentration	<4	<0.4	160	23	13	<0.1	44	42	<0.1	<0.1	<0.1	<0.1	<0.1
Maximum Concentration	<4	<0.4	240	28	15	<0.1	66	53	<0.1	<0.1	<0.1	<0.1	<0.1
% of Detects	0	0	100	100	100	0	100	100	0	0	0	0	0

Environmental Standards NEPM, NEPM 2013 Table 1B(7) Management Limits in Res / Parkland, Coarse Soil 2013, NEPM 2013 Table 1A(3) Res A/B Soil HSL for Vapour Intrusion, Silt 2013, NEPM 2013 Table 1B(6) ESLs for Urban Res, Coarse Soil 2013, NEPM 2013 Table 1A(1) HILs Res A Soil

P2410601JR05V01

7

								0	rganophospho	orous Pesticid	es				
	Azinophos methyl	Bromophosethyl	Chlorpyrifos	Chlorpyrifosmethyl	Coumaphos	Diazinon	Dichlorvos	Dimethoate	Disulfoton	Ethion	Fenitrothion	Fenthion	Malathion	Methidathion	Methyl parathion
	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
EQL	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
NEPM 2013 Table 1B(7) Management Limits in Res / Parkland, Coarse Soil															
NEPM 2013 Table 1A(3) Res A/B Soil HSL for Vapour Intrusion, Silt															
NEPM 2013 Table 1B(5) Generic EIL Urban Res & Public Open Space															
NEPM 2013 Table 1B(5) Site-Specific EIL Urban Res & Public Open Space															
NEPM 2013 Table 1B(6) ESLs for Urban Res, Coarse Soil															
NEPM 2013 Table 1A(1) HILs Res A Soil			160												

Г

Field ID	Date	Lab Report Number																		
10601/TP101/0.00.1	01 May 2025	379564	<0.1	<0.1	< 0.1	< 0.1	<0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	<0.1	<0.1	< 0.1	<0.1	<0.1	<0.1
10601/TP102/0.00.1	01 May 2025	379564	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
10601/TP103/0.10.2	01 May 2025	379564	<0.1	<0.1	<0.1	< 0.1	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.1	< 0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
10601/TP104/0.00.1	01 May 2025	379564	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
10601/TP105/0.10.2	01 May 2025	379564	<0.1	<0.1	<0.1	< 0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
10601/TP106/0.00.1	01 May 2025	379564	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
10601/TP107/0.00.1	01 May 2025	379564	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.1	<0.1	< 0.1	<0.1	<0.1	<0.1	< 0.1	<0.1	<0.1	<0.1
10601/TP108/0.10.2	01 May 2025	379564	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.1	< 0.1	< 0.1	<0.1	<0.1	< 0.1	< 0.1	< 0.1	<0.1	< 0.1	<0.1	<0.1	<0.1
·				·																·
Statistics																				
Number of Results			8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8

Number of Results	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8
Number of Detects	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Minimum Concentration	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Maximum Concentration	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
% of Detects	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Environmental Standards NEPM, NEPM 2013 Table 1B(7) Management Limits in Res / Parkland, Coarse Soil 2013, NEPM 2013 Table 1A(3) Res A/B Soil HSL for Vapour Intrusion, Silt 2013, NEPM 2013 Table 1B(6) ESLs for Urban Res, Coarse Soil

2013, NEPM 2013 Table 1A(1) HILs Res A Soil

										Organochlori	ne Pesticides									
	4,4DDE	aBHC	Aldrin	Aldrin + Dieldrin	рвнс	Chlordane (cis)	Chlordane (trans)	dBHC	DDD	DDT	DDT+DDE+DDD	Dieldrin	Endosulfan (total)	Endosulfan sulphate	Endrin	Endrin aldehyde	gBHC (Lindane)	Heptachlor	Heptachlor epoxide	Methoxychlor
	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
EQL	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
NEPM 2013 Table 1B(7) Management Limits in Res / Parkland, Coarse Soil																				
NEPM 2013 Table 1A(3) Res A/B Soil HSL for Vapour Intrusion, Silt																				
NEPM 2013 Table 1B(5) Generic EIL Urban Res & Public Open Space										180										
NEPM 2013 Table 1B(5) Site-Specific EIL Urban Res & Public Open Space																				
NEPM 2013 Table 1B(6) ESLs for Urban Res, Coarse Soil																				
NEPM 2013 Table 1A(1) HILs Res A Soil				6							240		270		10			6		300

Field ID	Date	Lab Report Number																				
10601/TP101/0.00.1	01 May 2025	379564	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.1
10601/TP102/0.00.1	01 May 2025	379564	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.1
10601/TP103/0.10.2	01 May 2025	379564	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.1	<0.1	< 0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
10601/TP104/0.00.1	01 May 2025	379564	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
10601/TP105/0.10.2	01 May 2025	379564	<0.1	<0.1	<0.1	<0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	<0.1	<0.1	<0.1	<0.1	< 0.1	<0.1	<0.1	<0.1	<0.1	<0.1
10601/TP106/0.00.1	01 May 2025	379564	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
10601/TP107/0.00.1	01 May 2025	379564	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
10601/TP108/0.10.2	01 May 2025	379564	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Statistics																						

Number of Results	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8
Number of Detects	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Minimum Concentration	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Maximum Concentration	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
% of Detects	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Environmental Standards NEPM, NEPM 2013 Table 1B(7) Management Limits in Res / Parkland, Coarse Soil 2013, NEPM 2013 Table 1A(3) Res A/B Soil HSL for Vapour Intrusion, Silt 2013, NEPM 2013 Table 1B(6) ESLs for Urban Res, Coarse Soil

2013, NEPM 2013 Table 1A(1) HILs Res A Soil

	Asbestos				BTEX							TRH						ТРН		
	Asbestos fibres	Naphthalene (VOC)	Benzene	Toluene	Ethylbenzene	Xylene (m & p)	Xylene (o)	Xylene Total	C6C10 Fraction (F1)	C6C10	>C10C16 Fraction (F2)	>C10C16 Fraction (F2 minus Naphthalene)	>C16C34 Fraction (F3)	>C34C40 Fraction (F4)	>C10C40 Fraction (Sum)	C6C9 Fraction	C10C14 Fraction	C15C28 Fraction	C29C36 Fraction	C10C36 Fraction (Sum)
	Detect	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
EQL		1	0.2	0.5	1	2	1	1	25	25	50	50	100	100	50	25	50	100	100	50
NEPM 2013 Table 1B(7) Management Limits in Res / Parkland, Coarse Soil									700		1,000		2,500	10,000						
NEPM 2013 Table 1A(3) Res A/B Soil HSL for Vapour Intrusion, Silt		4	0.6	390				95		40		230								
NEPM 2013 Table 1B(5) Generic EIL Urban Res & Public Open Space		170																		
NEPM 2013 Table 1B(5) Site-Specific EIL Urban Res & Public Open Space																				
NEPM 2013 Table 1B(6) ESLs for Urban Res, Coarse Soil			50	85	70			105		180	120	120	300	2,800						
NEPM 2013 Table 1A(1) HILs Res A Soil																				

Field ID	Date	Lab Report Number																				
10601/TP101/0.00.1	01 May 2025	379564																				
10601/TP102/0.00.1	01 May 2025	379564																				
10601/TP103/0.10.2	01 May 2025	379564																				
10601/TP104/0.00.1	01 May 2025	379564	0	<1	<0.2	< 0.5	<1	<2	<1	<1	<25	<25	<50	<50	100	<100	100	<25	<50	<100	100	100
10601/TP105/0.10.2	01 May 2025	379564																				
10601/TP106/0.00.1	01 May 2025	379564																				
10601/TP107/0.00.1	01 May 2025	379564																				
10601/TP108/0.10.2	01 May 2025	379564																				

Statistics

Number of Results	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Number of Detects	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0	1	1
Minimum Concentration	0	<1	<0.2	<0.5	<1	<2	<1	<1	<25	<25	<50	<50	100	<100	100	<25	<50	<100	100	100
Maximum Concentration	0	<1	<0.2	<0.5	<1	<2	<1	<1	<25	<25	<50	<50	100	<100	100	<25	<50	<100	100	100
% of Detects	0	0	0	0	0	0	0	0	0	0	0	0	100	0	100	0	0	0	100	100

Environmental Standards NEPM, NEPM 2013 Table 1B(7) Management Limits in Res / Parkland, Coarse Soil 2013, NEPM 2013 Table 1A(3) Res A/B Soil HSL for Vapour Intrusion, Silt 2013, NEPM 2013 Table 1B(6) ESLs for Urban Res, Coarse Soil

2013, NEPM 2013 Table 1A(1) HILs Res A Soil

										РАН									
	Benzo(b+j+k)fluoranthe ne	Acenaphthene	Acenaphthylene	Anthracene	Benzo(a) anthracene	Benzo(a) pyrene	Benzo(g,h,i)perylene	Chrysene	Dibenz(a,h)anthracene	Fluoranthene	Fluorene	Indeno(1,2,3c,d)pyrene	Naphthalene	Phenanthrene	Pyrene	Benzo(a)pyrene TEQ calc (Half)	Benzo(a)pyrene TEQ (LOR)	Benzo(a)pyrene TEQ calc (Zero)	PAHs (Sum of positives)
	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
EQL	0.2	0.1	0.1	0.1	0.1	0.05	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.5	0.5	0.5	0.05
NEPM 2013 Table 1B(7) Management Limits in Res / Parkland, Coarse Soil																			
NEPM 2013 Table 1A(3) Res A/B Soil HSL for Vapour Intrusion, Silt													4						
NEPM 2013 Table 1B(5) Generic EIL Urban Res & Public Open Space													170						
NEPM 2013 Table 1B(5) Site-Specific EIL Urban Res & Public Open Space																			
NEPM 2013 Table 1B(6) ESLs for Urban Res, Coarse Soil						0.7													
NEPM 2013 Table 1A(1) HILs Res A Soil																3	3	3	300

Field ID	Date	Lab Report Number																			
10601/TP101/0.00.1	01 May 2025	379564																			
10601/TP102/0.00.1	01 May 2025	379564																			
10601/TP103/0.10.2	01 May 2025	379564																			
10601/TP104/0.00.1	01 May 2025	379564	<0.2	<0.1	<0.1	<0.1	<0.1	< 0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.5	< 0.5	<0.5	< 0.05
10601/TP105/0.10.2	01 May 2025	379564																			
10601/TP106/0.00.1	01 May 2025	379564																			
10601/TP107/0.00.1	01 May 2025	379564																			
10601/TP108/0.10.2	01 May 2025	379564																			

Number of Results	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Number of Detects	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Minimum Concentration	<0.2	<0.1	<0.1	<0.1	<0.1	<0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	<0.5	<0.5	<0.05
Maximum Concentration	<0.2	<0.1	<0.1	<0.1	<0.1	<0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	<0.5	<0.5	<0.05
% of Detects	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Environmental Standards

NEPM, NEPM 2013 Table 1B(7) Management Limits in Res / Parkland, Coarse Soil 2013, NEPM 2013 Table 1A(3) Res A/B Soil HSL for Vapour Intrusion, Silt 2013, NEPM 2013 Table 1B(6) ESLs for Urban Res, Coarse Soil 2013, NEPM 2013 Table 1A(1) HILs Res A Soil

P2410601JR05V01

				PC	Bs							Inorganics			
	Arochlor 1016	Arochlor 1221	Arochlor 1232	Arochlor 1242	Arochlor 1248	Arochlor 1254	Arochlor 1260	PCBs (Sum of total)	Moisture Content	Exchangeable Calcium	pH 1:5 soil:water	Exchangeable Magnesium	Exchangeable Potassium	Exchangeable Sodium	Cation Exchange Capacity
	mg/kg	%	meq/100g		meq/100g	meq/100g	meq/100g	meq/100g							
EQL	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1		0.1	0.1	0.1	1
NEPM 2013 Table 1B(7) Management Limits in Res / Parkland, Coarse Soil															
NEPM 2013 Table 1A(3) Res A/B Soil HSL for Vapour Intrusion, Silt															
NEPM 2013 Table 1B(5) Generic EIL Urban Res & Public Open Space															
NEPM 2013 Table 1B(5) Site-Specific EIL Urban Res & Public Open Space															
NEPM 2013 Table 1B(6) ESLs for Urban Res, Coarse Soil															
NEPM 2013 Table 1A(1) HILs Res A Soil								1							

П

Field ID	Date	Lab Report Number															
10601/TP101/0.00.1	01 May 2025	379564									17						
10601/TP102/0.00.1	01 May 2025	379564									18						i
10601/TP103/0.10.2	01 May 2025	379564									15						I
10601/TP104/0.00.1	01 May 2025	379564	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	12						-
10601/TP105/0.10.2	01 May 2025	379564									20	13	6.2	4.8	2.1	<0.1	20
10601/TP106/0.00.1	01 May 2025	379564									22						l l
10601/TP107/0.00.1	01 May 2025	379564									21						i
10601/TP108/0.10.2	01 May 2025	379564									18	9.8	6.3	3.0	2.0	<0.1	15

Statistics

Number of Results	1	1	1	1	1	1	1	1	8	2	2	2	2	2	2
Number of Detects	0	0	0	0	0	0	0	0	8	2	2	2	2	0	2
Minimum Concentration	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	12	9.8	6.2	3	2	<0.1	15
Maximum Concentration	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	22	13	6.3	4.8	2.1	<0.1	20
% of Detects	0	0	0	0	0	0	0	0	100	100	100	100	100	0	100

Environmental Standards

NEPM, NEPM 2013 Table 1B(7) Management Limits in Res / Parkland, Coarse Soil 2013, NEPM 2013 Table 1A(3) Res A/B Soil HSL for Vapour Intrusion, Silt 2013, NEPM 2013 Table 1B(6) ESLs for Urban Res, Coarse Soil 2020, NEPM 2013 Table 1A(4) UII a Das A Soil

2013, NEPM 2013 Table 1A(1) HILs Res A Soil

P2410601JR05V01

Appendix G – Laboratory Analytical Documentation

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 379564

Client Details	
Client	Martens & Associates Pty Ltd
Attention	Gray Taylor
Address	Suite 201, 20 George St, Hornsby, NSW, 2077

Sample Details	
Your Reference	P2410601 Detailed Site Investigation: 3 Memory Ave
Number of Samples	11 Soil
Date samples received	02/05/2025
Date completed instructions received	02/05/2025

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details	
Date results requested by	09/05/2025
Date of Issue	09/05/2025
NATA Accreditation Number 2901. This	document shall not be reproduced except in full.
Accredited for compliance with ISO/IEC	17025 - Testing. Tests not covered by NATA are denoted with *

Asbestos Approved By

Analysed by Asbestos Approved Analyst: Lucy Zhu Authorised by Asbestos Approved Signatory: Lucy Zhu **Results Approved By** Diego Bigolin, Inorganics Supervisor Dragana Tomas, Senior Chemist Giovanni Agosti, Group Technical Manager Jack Wallis, Senior Chemist Loren Bardwell, Development Chemist Lucy Zhu, Asbestos Supervisor <u>Authorised By</u> Nancy Zhang, Laboratory Manager

vTRH(C6-C10)/BTEXN in Soil				
Our Reference		379564-4	379564-10	379564-11
Your Reference	UNITS	10601/TP104/0.0 -0.1	Trip Spike	Trip Blank
Date Sampled		01/05/2025	01/05/2025	01/05/2025
Type of sample		Soil	Soil	Soil
Date extracted	-	05/05/2025	05/05/2025	05/05/2025
Date analysed	-	06/05/2025	06/05/2025	06/05/2025
TRH C6 - C9	mg/kg	<25		<25
TRH C ₆ - C ₁₀	mg/kg	<25		<25
vTRH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25		<25
Benzene	mg/kg	<0.2	111%	[NA]
Toluene	mg/kg	<0.5	110%	[NA]
Ethylbenzene	mg/kg	<1	111%	[NA]
m+p-xylene	mg/kg	<2	111%	[NA]
o-Xylene	mg/kg	<1	111%	[NA]
Naphthalene	mg/kg	<1		[NA]
Total +ve Xylenes	mg/kg	<1		[NA]
Surrogate aaa-Trifluorotoluene	%	123	111	103

svTRH (C10-C40) in Soil		
Our Reference		379564-4
Your Reference	UNITS	10601/TP104/0.0 -0.1
Date Sampled		01/05/2025
Type of sample		Soil
Date extracted	-	05/05/2025
Date analysed	-	06/05/2025
TRH C ₁₀ - C ₁₄	mg/kg	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100
TRH C ₂₉ - C ₃₆	mg/kg	100
Total +ve TRH (C10-C36)	mg/kg	100
TRH >C ₁₀ -C ₁₆	mg/kg	<50
TRH >C ₁₀ -C ₁₆ less Naphthalene (F2)	mg/kg	<50
TRH >C ₁₆ -C ₃₄	mg/kg	100
TRH >C34 -C40	mg/kg	<100
Total +ve TRH (>C10-C40)	mg/kg	100
Surrogate o-Terphenyl	%	101

PAHs in Soil		
Our Reference		379564-4
Your Reference	UNITS	10601/TP104/0.0 -0.1
Date Sampled		01/05/2025
Type of sample		Soil
Date extracted	-	05/05/2025
Date analysed	-	07/05/2025
Naphthalene	mg/kg	<0.1
Acenaphthylene	mg/kg	<0.1
Acenaphthene	mg/kg	<0.1
Fluorene	mg/kg	<0.1
Phenanthrene	mg/kg	<0.1
Anthracene	mg/kg	<0.1
Fluoranthene	mg/kg	<0.1
Pyrene	mg/kg	<0.1
Benzo(a)anthracene	mg/kg	<0.1
Chrysene	mg/kg	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2
Benzo(a)pyrene	mg/kg	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1
Total +ve PAH's	mg/kg	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5
Surrogate p-Terphenyl-d14	%	93

Organochlorine Pesticides in soil						
Our Reference		379564-1	379564-2	379564-3	379564-4	379564-5
Your Reference	UNITS	10601/TP101/0.0 -0.1	10601/TP102/0.0 -0.1	10601/TP103/0.1 -0.2	10601/TP104/0.0 -0.1	10601/TP105/0.1 -0.2
Date Sampled		01/05/2025	01/05/2025	01/05/2025	01/05/2025	01/05/2025
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	05/05/2025	05/05/2025	05/05/2025	05/05/2025	05/05/2025
Date analysed	-	07/05/2025	07/05/2025	07/05/2025	07/05/2025	07/05/2025
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
НСВ	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Mirex	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total Positive Aldrin+Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate 4-Chloro-3-NBTF	%	88	89	95	88	91

Organochlorine Pesticides in soil				
Our Reference		379564-6	379564-7	379564-8
Your Reference	UNITS	10601/TP106/0.0 -0.1	10601/TP107/0.0 -0.1	10601/TP108/0.1 -0.2
Date Sampled		01/05/2025	01/05/2025	01/05/2025
Type of sample		Soil	Soil	Soil
Date extracted	-	05/05/2025	05/05/2025	05/05/2025
Date analysed	-	07/05/2025	07/05/2025	07/05/2025
alpha-BHC	mg/kg	<0.1	<0.1	<0.1
НСВ	mg/kg	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1
Mirex	mg/kg	<0.1	<0.1	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1
Total Positive Aldrin+Dieldrin	mg/kg	<0.1	<0.1	<0.1
Surrogate 4-Chloro-3-NBTF	%	91	90	94

Organophosphorus Pesticides in Soil						
Our Reference		379564-1	379564-2	379564-3	379564-4	379564-5
Your Reference	UNITS	10601/TP101/0.0 -0.1	10601/TP102/0.0 -0.1	10601/TP103/0.1 -0.2	10601/TP104/0.0 -0.1	10601/TP105/0.1 -0.2
Date Sampled		01/05/2025	01/05/2025	01/05/2025	01/05/2025	01/05/2025
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	05/05/2025	05/05/2025	05/05/2025	05/05/2025	05/05/2025
Date analysed	-	07/05/2025	07/05/2025	07/05/2025	07/05/2025	07/05/2025
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Mevinphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phorate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Disulfoton	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyrifos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion-Methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenthion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methidathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenamiphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phosalone	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Coumaphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate 4-Chloro-3-NBTF	%	88	89	95	88	91

Organophosphorus Pesticides in Soil				
Our Reference		379564-6	379564-7	379564-8
Your Reference	UNITS	10601/TP106/0.0 -0.1	10601/TP107/0.0 -0.1	10601/TP108/0.1 -0.2
Date Sampled		01/05/2025	01/05/2025	01/05/2025
Type of sample		Soil	Soil	Soil
Date extracted	-	05/05/2025	05/05/2025	05/05/2025
Date analysed	-	07/05/2025	07/05/2025	07/05/2025
Dichlorvos	mg/kg	<0.1	<0.1	<0.1
Mevinphos	mg/kg	<0.1	<0.1	<0.1
Phorate	mg/kg	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1
Disulfoton	mg/kg	<0.1	<0.1	<0.1
Chlorpyrifos-methyl	mg/kg	<0.1	<0.1	<0.1
Parathion-Methyl	mg/kg	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1
Fenthion	mg/kg	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1
Methidathion	mg/kg	<0.1	<0.1	<0.1
Fenamiphos	mg/kg	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1
Phosalone	mg/kg	<0.1	<0.1	<0.1
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1
Coumaphos	mg/kg	<0.1	<0.1	<0.1
Surrogate 4-Chloro-3-NBTF	%	91	90	94

PCBs in Soil		
Our Reference		379564-4
Your Reference	UNITS	10601/TP104/0.0 -0.1
Date Sampled		01/05/2025
Type of sample		Soil
Date extracted	-	05/05/2025
Date analysed	-	07/05/2025
Aroclor 1016	mg/kg	<0.1
Aroclor 1221	mg/kg	<0.1
Aroclor 1232	mg/kg	<0.1
Aroclor 1242	mg/kg	<0.1
Aroclor 1248	mg/kg	<0.1
Aroclor 1254	mg/kg	<0.1
Aroclor 1260	mg/kg	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1
Surrogate 2-Fluorobiphenyl	%	95

Acid Extractable metals in soil						
Our Reference		379564-1	379564-2	379564-3	379564-4	379564-5
Your Reference	UNITS	10601/TP101/0.0 -0.1	10601/TP102/0.0 -0.1	10601/TP103/0.1 -0.2	10601/TP104/0.0 -0.1	10601/TP105/0.1 -0.2
Date Sampled		01/05/2025	01/05/2025	01/05/2025	01/05/2025	01/05/2025
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	05/05/2025	05/05/2025	05/05/2025	05/05/2025	05/05/2025
Date analysed	-	06/05/2025	06/05/2025	06/05/2025	06/05/2025	06/05/2025
Arsenic	mg/kg	<4	<4	<4	<4	<4
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	180	170	210	190	240
Copper	mg/kg	24	26	28	27	28
Lead	mg/kg	15	15	15	14	14
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	44	64	66	58	51
Zinc	mg/kg	44	45	47	51	42

Acid Extractable metals in soil					
Our Reference		379564-6	379564-7	379564-8	379564-9
Your Reference	UNITS	10601/TP106/0.0 -0.1	10601/TP107/0.0 -0.1	10601/TP108/0.1 -0.2	10601/DUP01
Date Sampled		01/05/2025	01/05/2025	01/05/2025	01/05/2025
Type of sample		Soil	Soil	Soil	Soil
Date prepared	-	05/05/2025	05/05/2025	05/05/2025	05/05/2025
Date analysed	-	06/05/2025	06/05/2025	06/05/2025	06/05/2025
Arsenic	mg/kg	<4	<4	<4	<4
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	160	220	180	180
Copper	mg/kg	23	27	27	26
Lead	mg/kg	13	15	14	16
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	47	61	53	45
Zinc	mg/kg	43	53	42	45

Moisture						
Our Reference		379564-1	379564-2	379564-3	379564-4	379564-5
Your Reference	UNITS	10601/TP101/0.0 -0.1	10601/TP102/0.0 -0.1	10601/TP103/0.1 -0.2	10601/TP104/0.0 -0.1	10601/TP105/0.1 -0.2
Date Sampled		01/05/2025	01/05/2025	01/05/2025	01/05/2025	01/05/2025
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	05/05/2025	05/05/2025	05/05/2025	05/05/2025	05/05/2025
Date analysed	-	06/05/2025	06/05/2025	06/05/2025	06/05/2025	06/05/2025
Moisture	%	17	18	15	12	20

Moisture					
Our Reference		379564-6	379564-7	379564-8	379564-9
Your Reference	UNITS	10601/TP106/0.0 -0.1	10601/TP107/0.0 -0.1	10601/TP108/0.1 -0.2	10601/DUP01
Date Sampled		01/05/2025	01/05/2025	01/05/2025	01/05/2025
Type of sample		Soil	Soil	Soil	Soil
Date prepared	-	05/05/2025	05/05/2025	05/05/2025	05/05/2025
Date analysed	-	06/05/2025	06/05/2025	06/05/2025	06/05/2025
Moisture	%	22	21	18	17

Asbestos ID - soils		
Our Reference		379564-4
Your Reference	UNITS	10601/TP104/0.0 -0.1
Date Sampled		01/05/2025
Type of sample		Soil
Date analysed	-	09/05/2025
Sample mass tested	g	Approx. 35g
Sample Description	-	Brown coarse- grained soil & rocks
Asbestos ID in soil	-	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected
Asbestos comments	-	Nil
Trace Analysis	-	No asbestos detected

CEC			
Our Reference		379564-5	379564-8
Your Reference	UNITS	10601/TP105/0.1 -0.2	10601/TP108/0.1 -0.2
Date Sampled		01/05/2025	01/05/2025
Type of sample		Soil	Soil
Date prepared	-	09/05/2025	09/05/2025
Date analysed	-	09/05/2025	09/05/2025
Exchangeable Ca	meq/100g	13	9.8
Exchangeable K	meq/100g	2.1	2.0
Exchangeable Mg	meq/100g	4.8	3.0
Exchangeable Na	meq/100g	<0.1	<0.1
Cation Exchange Capacity	meq/100g	20	15

Misc Inorg - Soil			
Our Reference		379564-5	379564-8
Your Reference	UNITS	10601/TP105/0.1 -0.2	10601/TP108/0.1 -0.2
Date Sampled		01/05/2025	01/05/2025
Type of sample		Soil	Soil
Date prepared	-	07/05/2025	07/05/2025
Date analysed	-	07/05/2025	07/05/2025
pH 1:5 soil:water	pH Units	6.2	6.3

Method ID	Methodology Summary
ASB-001	Asbestos ID - Qualitative identification of asbestos in bulk samples using Polarised Light Microscopy and Dispersion Staining Techniques including Synthetic Mineral Fibre and Organic Fibre as per Australian Standard 4964-2004.
Inorg-001	pH - Measured using pH meter and electrode. Please note that the results for water analyses are indicative only, as analysis outside of the APHA storage times.
Inorg-008	Moisture content determined by heating at 105+/-5 °C for a minimum of 12 hours.
Metals-020	Determination of various metals by ICP-AES.
	Total Phosphate determined stochiometrically from Phosphorus (assumed to be present as Phosphate).
	Where salts (oxides, chlorides etc.) are calculated from the element concentration stoichiometrically there is no guarantee that the salt form is completely soluble in the acids used in the preparation.
Metals-020	Determination of exchangeable cations and cation exchange capacity in soils using 1M Ammonium Chloride exchange and ICP-OES analytical finish.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
	Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual TRH fractions (>C10-C40).
Org-021/022/025	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD and/or GC-MS/GC-MSMS. Note, the Total +ve PCBs PQL is reflective of the lowest individual PQL and is therefore" Total +ve PCBs" is simply a sum of the positive individual PCBs.
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS/GC-MSMS.

Method ID	Methodology Summary
Org-022/025	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-MS/GC-MSMS.
	Note, the Total +ve reported DDD+DDE+DDT PQL is reflective of the lowest individual PQL and is therefore simply a sum of the positive individually report DDD+DDE+DDT.
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS and/or GC-MS/MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013. For soil results:- 1. 'EQ PQL'values are assuming all contributing PAHs reported as <pql actually="" and="" approach="" are="" at="" be="" calculation="" can="" conservative="" contribute="" false="" give="" given="" is="" may="" most="" not="" pahs="" positive="" pql.="" present.<br="" teq="" teqs="" that="" the="" this="" to="">2. 'EQ zero'values are assuming all contributing PAHs reported as <pql and="" approach="" are="" below="" but="" calculation="" conservative="" contribute="" false="" is="" least="" more="" negative="" pahs="" pql.<br="" present="" susceptible="" teq="" teqs="" that="" the="" this="" to="" when="" zero.="">3. 'EQ half PQL'values are assuming all contributing PAHs reported as <pql a="" above.<br="" and="" approaches="" are="" between="" conservative="" half="" hence="" least="" mid-point="" most="" pql.="" stipulated="" the="">Note, the Total +ve PAHs PQL is reflective of the lowest individual PQL and is therefore "Total +ve PAHs" is simply a sum of the positive individual PAHs.</pql></pql></pql>
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater. Note, the Total +ve Xylene PQL is reflective of the lowest individual PQL and is therefore "Total +ve Xylenes" is simply a sum of the positive individual Xylenes.

QUALITY CONTROL: vTRH(C6-C10)/BTEXN in Soil						Du	Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-8	[NT]
Date extracted	-			5/05/2025	4	05/05/2025	05/05/2025		5/05/2025	[NT]
Date analysed	-			06/05/2025	4	06/05/2025	06/05/2025		06/05/2025	[NT]
TRH C ₆ - C ₉	mg/kg	25	Org-023	<25	4	<25	<25	0	97	[NT]
TRH C ₆ - C ₁₀	mg/kg	25	Org-023	<25	4	<25	<25	0	97	[NT]
Benzene	mg/kg	0.2	Org-023	<0.2	4	<0.2	<0.2	0	101	[NT]
Toluene	mg/kg	0.5	Org-023	<0.5	4	<0.5	<0.5	0	99	[NT]
Ethylbenzene	mg/kg	1	Org-023	<1	4	<1	<1	0	98	[NT]
m+p-xylene	mg/kg	2	Org-023	<2	4	<2	<2	0	94	[NT]
o-Xylene	mg/kg	1	Org-023	<1	4	<1	<1	0	97	[NT]
Naphthalene	mg/kg	1	Org-023	<1	4	<1	<1	0	[NT]	[NT]
Surrogate aaa-Trifluorotoluene	%		Org-023	85	4	123	112	9	100	[NT]

QUALITY CO	QUALITY CONTROL: svTRH (C10-C40) in Soil							Duplicate			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-8	[NT]	
Date extracted	-			05/05/2025	4	05/05/2025	05/05/2025		05/05/2025		
Date analysed	-			06/05/2025	4	06/05/2025	06/05/2025		06/05/2025		
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-020	<50	4	<50	<50	0	129		
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-020	<100	4	<100	<100	0	106		
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-020	<100	4	100	140	33	100		
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-020	<50	4	<50	<50	0	129		
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-020	<100	4	100	140	33	106		
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-020	<100	4	<100	<100	0	100		
Surrogate o-Terphenyl	%		Org-020	117	4	101	99	2	121	[NT]	

QUALITY CONTROL: PAHs in Soil							Duplicate			Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-8	[NT]	
Date extracted	-			05/05/2025	4	05/05/2025	05/05/2025		05/05/2025		
Date analysed	-			07/05/2025	4	07/05/2025	07/05/2025		07/05/2025		
Naphthalene	mg/kg	0.1	Org-022/025	<0.1	4	<0.1	<0.1	0	84		
Acenaphthylene	mg/kg	0.1	Org-022/025	<0.1	4	<0.1	<0.1	0	[NT]		
Acenaphthene	mg/kg	0.1	Org-022/025	<0.1	4	<0.1	<0.1	0	74		
Fluorene	mg/kg	0.1	Org-022/025	<0.1	4	<0.1	<0.1	0	82		
Phenanthrene	mg/kg	0.1	Org-022/025	<0.1	4	<0.1	<0.1	0	84		
Anthracene	mg/kg	0.1	Org-022/025	<0.1	4	<0.1	<0.1	0	[NT]		
Fluoranthene	mg/kg	0.1	Org-022/025	<0.1	4	<0.1	<0.1	0	90		
Pyrene	mg/kg	0.1	Org-022/025	<0.1	4	<0.1	<0.1	0	92		
Benzo(a)anthracene	mg/kg	0.1	Org-022/025	<0.1	4	<0.1	<0.1	0	[NT]		
Chrysene	mg/kg	0.1	Org-022/025	<0.1	4	<0.1	<0.1	0	106		
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-022/025	<0.2	4	<0.2	<0.2	0	[NT]		
Benzo(a)pyrene	mg/kg	0.05	Org-022/025	<0.05	4	<0.05	<0.05	0	80		
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-022/025	<0.1	4	<0.1	<0.1	0	[NT]		
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-022/025	<0.1	4	<0.1	<0.1	0	[NT]		
Benzo(g,h,i)perylene	mg/kg	0.1	Org-022/025	<0.1	4	<0.1	<0.1	0	[NT]		
Surrogate p-Terphenyl-d14	%		Org-022/025	102	4	93	99	6	94	[NT]	

QUALITY CONTROL: Organochlorine Pesticides in soil					Duplicate				Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-8	[NT]	
Date extracted	-			05/05/2025	4	05/05/2025	05/05/2025		05/05/2025	[NT]	
Date analysed	-			07/05/2025	4	07/05/2025	07/05/2025		07/05/2025	[NT]	
alpha-BHC	mg/kg	0.1	Org-022/025	<0.1	4	<0.1	<0.1	0	82	[NT]	
НСВ	mg/kg	0.1	Org-022/025	<0.1	4	<0.1	<0.1	0	[NT]	[NT]	
beta-BHC	mg/kg	0.1	Org-022/025	<0.1	4	<0.1	<0.1	0	80	[NT]	
gamma-BHC	mg/kg	0.1	Org-022/025	<0.1	4	<0.1	<0.1	0	[NT]	[NT]	
Heptachlor	mg/kg	0.1	Org-022/025	<0.1	4	<0.1	<0.1	0	76	[NT]	
delta-BHC	mg/kg	0.1	Org-022/025	<0.1	4	<0.1	<0.1	0	[NT]	[NT]	
Aldrin	mg/kg	0.1	Org-022/025	<0.1	4	<0.1	<0.1	0	96	[NT]	
Heptachlor Epoxide	mg/kg	0.1	Org-022/025	<0.1	4	<0.1	<0.1	0	102	[NT]	
gamma-Chlordane	mg/kg	0.1	Org-022/025	<0.1	4	<0.1	<0.1	0	[NT]	[NT]	
alpha-chlordane	mg/kg	0.1	Org-022/025	<0.1	4	<0.1	<0.1	0	[NT]	[NT]	
Endosulfan I	mg/kg	0.1	Org-022/025	<0.1	4	<0.1	<0.1	0	[NT]	[NT]	
pp-DDE	mg/kg	0.1	Org-022/025	<0.1	4	<0.1	<0.1	0	86	[NT]	
Dieldrin	mg/kg	0.1	Org-022/025	<0.1	4	<0.1	<0.1	0	104	[NT]	
Endrin	mg/kg	0.1	Org-022/025	<0.1	4	<0.1	<0.1	0	82	[NT]	
Endosulfan II	mg/kg	0.1	Org-022/025	<0.1	4	<0.1	<0.1	0	[NT]	[NT]	
pp-DDD	mg/kg	0.1	Org-022/025	<0.1	4	<0.1	<0.1	0	96	[NT]	
Endrin Aldehyde	mg/kg	0.1	Org-022/025	<0.1	4	<0.1	<0.1	0	[NT]	[NT]	
pp-DDT	mg/kg	0.1	Org-022/025	<0.1	4	<0.1	<0.1	0	[NT]	[NT]	
Endosulfan Sulphate	mg/kg	0.1	Org-022/025	<0.1	4	<0.1	<0.1	0	74	[NT]	
Methoxychlor	mg/kg	0.1	Org-022/025	<0.1	4	<0.1	<0.1	0	[NT]	[NT]	
Mirex	mg/kg	0.1	Org-022/025	<0.1	4	<0.1	<0.1	0	[NT]	[NT]	
Surrogate 4-Chloro-3-NBTF	%		Org-022/025	97	4	88	90	2	92	[NT]	

QUALITY CONTROL: Organophosphorus Pesticides in Soil						Duplicate			Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-8	[NT]	
Date extracted	-			05/05/2025	4	05/05/2025	05/05/2025		05/05/2025		
Date analysed	-			07/05/2025	4	07/05/2025	07/05/2025		07/05/2025		
Dichlorvos	mg/kg	0.1	Org-022/025	<0.1	4	<0.1	<0.1	0	102		
Mevinphos	mg/kg	0.1	Org-022/025	<0.1	4	<0.1	<0.1	0	[NT]		
Phorate	mg/kg	0.1	Org-022/025	<0.1	4	<0.1	<0.1	0	[NT]		
Dimethoate	mg/kg	0.1	Org-022/025	<0.1	4	<0.1	<0.1	0	[NT]		
Diazinon	mg/kg	0.1	Org-022/025	<0.1	4	<0.1	<0.1	0	[NT]		
Disulfoton	mg/kg	0.1	Org-022/025	<0.1	4	<0.1	<0.1	0	[NT]		
Chlorpyrifos-methyl	mg/kg	0.1	Org-022/025	<0.1	4	<0.1	<0.1	0	[NT]		
Parathion-Methyl	mg/kg	0.1	Org-022/025	<0.1	4	<0.1	<0.1	0	[NT]		
Ronnel	mg/kg	0.1	Org-022/025	<0.1	4	<0.1	<0.1	0	100		
Fenitrothion	mg/kg	0.1	Org-022/025	<0.1	4	<0.1	<0.1	0	102		
Malathion	mg/kg	0.1	Org-022/025	<0.1	4	<0.1	<0.1	0	114		
Chlorpyriphos	mg/kg	0.1	Org-022/025	<0.1	4	<0.1	<0.1	0	104		
Fenthion	mg/kg	0.1	Org-022/025	<0.1	4	<0.1	<0.1	0	[NT]		
Parathion	mg/kg	0.1	Org-022/025	<0.1	4	<0.1	<0.1	0	80		
Bromophos-ethyl	mg/kg	0.1	Org-022/025	<0.1	4	<0.1	<0.1	0	[NT]		
Methidathion	mg/kg	0.1	Org-022/025	<0.1	4	<0.1	<0.1	0	[NT]		
Fenamiphos	mg/kg	0.1	Org-022/025	<0.1	4	<0.1	<0.1	0	[NT]		
Ethion	mg/kg	0.1	Org-022/025	<0.1	4	<0.1	<0.1	0	100		
Phosalone	mg/kg	0.1	Org-022/025	<0.1	4	<0.1	<0.1	0	[NT]		
Azinphos-methyl (Guthion)	mg/kg	0.1	Org-022/025	<0.1	4	<0.1	<0.1	0	[NT]		
Coumaphos	mg/kg	0.1	Org-022/025	<0.1	4	<0.1	<0.1	0	[NT]		
Surrogate 4-Chloro-3-NBTF	%		Org-022/025	97	4	88	90	2	92	[NT]	

QUALITY CONTROL: PCBs in Soil					Duplicate				Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-8	[NT]
Date extracted	-			05/05/2025	4	05/05/2025	05/05/2025		05/05/2025	[NT]
Date analysed	-			07/05/2025	4	07/05/2025	07/05/2025		07/05/2025	[NT]
Aroclor 1016	mg/kg	0.1	Org-021/022/025	<0.1	4	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1221	mg/kg	0.1	Org-021/022/025	<0.1	4	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1232	mg/kg	0.1	Org-021/022/025	<0.1	4	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1242	mg/kg	0.1	Org-021/022/025	<0.1	4	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1248	mg/kg	0.1	Org-021/022/025	<0.1	4	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1254	mg/kg	0.1	Org-021/022/025	<0.1	4	<0.1	<0.1	0	101	[NT]
Aroclor 1260	mg/kg	0.1	Org-021/022/025	<0.1	4	<0.1	<0.1	0	[NT]	[NT]
Surrogate 2-Fluorobiphenyl	%		Org-021/022/025	96	4	95	92	3	97	[NT]

QUALITY CONT	Duplicate				Spike Recovery %					
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-6	379564-5
Date prepared	-			05/05/2025	4	05/05/2025	05/05/2025		05/05/2025	05/05/2025
Date analysed	-			06/05/2025	4	06/05/2025	06/05/2025		06/05/2025	06/05/2025
Arsenic	mg/kg	4	Metals-020	<4	4	<4	<4	0	115	73
Cadmium	mg/kg	0.4	Metals-020	<0.4	4	<0.4	<0.4	0	103	80
Chromium	mg/kg	1	Metals-020	<1	4	190	180	5	107	#
Copper	mg/kg	1	Metals-020	<1	4	27	26	4	111	106
Lead	mg/kg	1	Metals-020	<1	4	14	14	0	106	87
Mercury	mg/kg	0.1	Metals-021	<0.1	4	<0.1	<0.1	0	110	126
Nickel	mg/kg	1	Metals-020	<1	4	58	57	2	105	86
Zinc	mg/kg	1	Metals-020	<1	4	51	53	4	107	81

QUALITY CONTROL: CEC						Duplicate				Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]	
Date prepared	-			09/05/2025	[NT]		[NT]	[NT]	09/05/2025		
Date analysed	-			09/05/2025	[NT]		[NT]	[NT]	09/05/2025		
Exchangeable Ca	meq/100g	0.1	Metals-020	<0.1	[NT]		[NT]	[NT]	99		
Exchangeable K	meq/100g	0.1	Metals-020	<0.1	[NT]		[NT]	[NT]	104		
Exchangeable Mg	meq/100g	0.1	Metals-020	<0.1	[NT]		[NT]	[NT]	100		
Exchangeable Na	meq/100g	0.1	Metals-020	<0.1	[NT]	[NT]	[NT]	[NT]	103	[NT]	

QUALITY CONTROL: Misc Inorg - Soil						Du	Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date prepared	-			07/05/2025	[NT]		[NT]	[NT]	07/05/2025	[NT]
Date analysed	-			07/05/2025	[NT]		[NT]	[NT]	07/05/2025	[NT]
pH 1:5 soil:water	pH Units		Inorg-001	[NT]	[NT]	[NT]	[NT]	[NT]	99	[NT]

Result Definitions					
NT	Not tested				
NA	Test not required				
INS	Insufficient sample for this test				
PQL	Practical Quantitation Limit				
<	Less than				
>	Greater than				
RPD	Relative Percent Difference				
LCS	Laboratory Control Sample				
NS	Not specified				
NEPM	National Environmental Protection Measure				
NR	Not Reported				

Quality Contro	Quality Control Definitions						
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.						
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.						
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.						
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.						
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.						

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Air volumes are typically provided by customers (often as flow rate(s) and sampling time(s) and/or simply volumes) sampled or exposure times (determines 'volume' passive badges are exposed to)). Hence in such circumstances the volume measurement is inevitably not covered by Envirolab's NATA accreditation. An exception may occur where Envirolab Newcastle does the sampling where accreditation exists for certain types of sampling and hence volume determination(s). Note air volumes are often used to determine concentrations for dust and/or analyses on filters, sorbents and in impingers. For canister sampling, the air volume is covered by Envirolab's NATA accreditation.

Urine Analysis - The BEI values listed are taken from the 2022 edition of "TLVs and BEIs Threshold Limits" by ACGIH.

Report Comments

8 metals in soil - # Percent recovery is not possible to report due to the inhomogeneous nature of the element/s in the sample/s. However an acceptable recovery was obtained for the LCS.

Asbestos: A portion of the supplied sample was sub-sampled for asbestos according to ASB-001 asbestos subsampling procedure. We cannot guarantee that this sub-sample is indicative of the entire sample. Envirolab/MPL recommends supplying 40-60g or 500ml of sample in its own container.

Note: Sample 379564-4 was sub-sampled from jar provided by the client.

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 379564-A

Client Details	
Client	Martens & Associates Pty Ltd
Attention	Ben McGiffin
Address	Suite 201, 20 George St, Hornsby, NSW, 2077

Sample Details	
Your Reference	P2410601 Detailed Site Investigation: 3 Memory Ave
Number of Samples	Additional analysis
Date samples received	02/05/2025
Date completed instructions received	12/05/2025

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Report Details					
Date results requested by	14/05/2025				
Date of Issue	14/05/2025				
NATA Accreditation Number 2901. This document shall not be reproduced except in full.					
Accredited for compliance with ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *					

Results Approved By Diego Bigolin, Inorganics Supervisor <u>Authorised By</u> Nancy Zhang, Laboratory Manager

Misc Soil - Inorg						
Our Reference		379564-A-1	379564-A-2	379564-A-3	379564-A-4	379564-A-5
Your Reference	UNITS	10601/TP101/0.0 -0.1	10601/TP102/0.0 -0.1	10601/TP103/0.1 -0.2	10601/TP104/0.0 -0.1	10601/TP105/0.1 -0.2
Date Sampled		01/05/2025	01/05/2025	01/05/2025	01/05/2025	01/05/2025
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	13/04/2025	13/04/2025	13/04/2025	13/04/2025	13/04/2025
Date analysed	-	13/04/2025	13/04/2025	13/04/2025	13/04/2025	13/04/2025
Hexavalent Chromium, Cr ⁶⁺	mg/kg	<1	<1	<1	<1	<1
Trivalent Cr	mg/kg	<1	<1	<1	<1	<1
Misc Soil - Inorg						

Our Reference		379564-A-6	379564-A-7	379564-A-8	379564-A-9
Your Reference	UNITS	10601/TP106/0.0 -0.1	10601/TP107/0.0 -0.1	10601/TP108/0.1 -0.2	10601/DUP01
Date Sampled		01/05/2025	01/05/2025	01/05/2025	01/05/2025
Type of sample		Soil	Soil	Soil	Soil
Date prepared	-	13/04/2025	13/04/2025	13/04/2025	13/04/2025
Date analysed	-	13/04/2025	13/04/2025	13/04/2025	13/04/2025
Hexavalent Chromium, Cr ⁶⁺	mg/kg	<1	<1	<1	<1
Trivalent Cr	mg/kg	<1	<1	<1	<1

Method ID	Methodology Summary
Inorg-118	Hexavalent Chromium (Cr6+) - determined firstly by separation using ion chromatography followed by the colourimetric analytical finish.
	Water samples are ideally field filtered into alkali preserved containers prior to receipt for dissolved Cr6+ analysis. Unfiltered water samples into alkali preserved containers (or pH adjusted to pH 8-9 on receipt) can be classified as Total (unfiltered) Cr6+.
	Please note, for 'Total/Unfiltered' Trivalent Chromium in waters [calculated], these results may be exaggerated due to the digestive limitation of 'Total/Unfiltered' Hexavalent Chromium in NaOH at pH 8-9 compared to more comprehensive digestion for Total Chromium using the mineral acids HNO3 and HCI.
	Solid (includes soils, filters, paints, swabs for example) samples are extracted in a buffered catalysed solution prior to the analytical finish above. Water extractable options are available (e.g. as an option for filters) on request.
	Impingers may need pH adjusting to pH 8-9 prior to IC-colourimetric analytical finish.

QUALITY CONTROL: Misc Soil - Inorg						Du	Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date prepared	-			13/04/2025	1	13/04/2025	13/04/2025		13/04/2025	
Date analysed	-			13/04/2025	1	13/04/2025	13/04/2025		13/04/2025	
Hexavalent Chromium, Cr6+	mg/kg	1	Inorg-118	<1	1	<1	<1	0	101	
Trivalent Cr	mg/kg	1	Inorg-118	<1	1	<1	<1	0	[NT]	[NT]
Client Reference: P2410601 Detailed Site Investigation: 3 Memory Ave

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Contro	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Air volumes are typically provided by customers (often as flow rate(s) and sampling time(s) and/or simply volumes) sampled or exposure times (determines 'volume' passive badges are exposed to)). Hence in such circumstances the volume measurement is inevitably not covered by Envirolab's NATA accreditation. An exception may occur where Envirolab Newcastle does the sampling where accreditation exists for certain types of sampling and hence volume determination(s). Note air volumes are often used to determine concentrations for dust and/or analyses on filters, sorbents and in impingers. For canister sampling, the air volume is covered by Envirolab's NATA accreditation.

Urine Analysis - The BEI values listed are taken from the 2022 edition of "TLVs and BEIs Threshold Limits" by ACGIH.

Appendix H – COC and Sample Receipt

allen some

۰.

. ..

1

			3		Pr	oject					2		
Name ,	P241060	1 Detailed Site	Invest	ligation: 3 Memo	ory Ave,	Crookwell NS	W 2583			<u>·· = · · =</u>			
Martens Contact Officer	Bryson M	1onaghan					Con	act Email	bmond	aghan@ma	irtens.com.c	עג טג	
	Sample	Date	01/05	5/2025	Dispo	Dispatch Date 02/05/2025 Turnaround Time					Standard		
Sampling and Shipping Our Reference P2410601COC01VC				0601COC01V01		Shipping N (X)			Method		Post	Courie	r X
	On Ice ()	X)	Х	No Ice (X)		Other (X))			<u></u>			
	· · · · · · · · · ·			a kina	Labe	oratory				•		·. ·	
Name	Envirola	ıb Services Pt	y Ltd										
Sample Delivery Address	12 Ashle	əy St, Chatsw	ood N	NSW 2067		i							
Instructions	-								·				
Delivery Contact	Name	Sample Rece	ipt	Phone	02 99 10	06200	Fax		Email	Samplere	ceipt@envir	rolabservices.co	om.au
Please Send Report By (X)	Post	Fa	x	Email	<	Reporting E	mail Ad	ddress bmonaghan@martens.com.au gtaylor@martens.com.au bmcgiffin@martens.com.au					
		•		. • .	, ',	3• , s' ,	,	, marte	ns@esdat.c	com.au			

	Sample ID	8 HM	OCP/OPP	Combo 6a	CEC	рН	TRH	BTEX
i [10601/TP101/0.0-0.1	x	x		·			
2	10601/TP102/0.0-0.1	x	x					
3	. 10601/TP103/0.1-0.2	x	x	_			CDV/IDOI	Envirolab Services
ч[10601/TP104/0.0-0.1			x			CITVIROL storr	Chatswood NSW 2067
5[10601/TP105/0.1-0.2	x	x		x	x	Job No:	Ph: (02) 9910 6200
6	10601/TP106/0.0-0.1	x	x					514564
7	10601/TP107/0.0-0.1	x	x				Date Rec	eived: 2/3/25
8[10601/TP108/0.1-0.2	x	x		x	x	Hime Rec Received	elved: 1530
१ [10601/DUP01	x					Temp: Co	Ambient S'C
_				· · · ·	Head O	ffice	Cooling: I Security	celicepack htact/Broken/None

Suite 201, 20 George St	
Hornsby NSW 2077, Australia	
Ph 02 9476 9999 Fax 02 9476	

mail@martens.com.au
 www.martens.com.au
 MARTENS & ASSOCIATES P/L

..

SOIL ANALYSIS CHAIN OF CUSTODY

Page of

	Sample ID	8 HM	OCP/OPP	Combo 6a	CEC	рH	TRH	BTEX
10	Trip Spike							x
11	Trip Blank						x	
			·					
	Notes							

#379564 2/5/25

SAMPLE RECEIPT ADVICE

Client Details	
Client	Martens & Associates Pty Ltd
Attention	Gray Taylor

Sample Login Details	
Your reference	P2410601 Detailed Site Investigation: 3 Memory Ave
Envirolab Reference	379564
Date Sample Received	02/05/2025
Date Instructions Received	02/05/2025
Date Results Expected to be Reported	09/05/2025

Sample Condition	
Samples received in appropriate condition for analysis	Yes
No. of Samples Provided	11 Soil
Turnaround Time Requested	Standard
Temperature on Receipt (°C)	5
Cooling Method	Ice
Sampling Date Provided	YES

Comments
Nil

Please direct any queries to:

Aileen Hie	Jacinta Hurst							
Phone: 02 9910 6200	Phone: 02 9910 6200							
Fax: 02 9910 6201	Fax: 02 9910 6201							
Email: ahie@envirolab.com.au	Email: jhurst@envirolab.com.au							

Analysis Underway, details on the following page:

Sample ID	VTRH(C6-C10)/BTEXN in Soil	svTRH (C10-C40) in Soil	PAHs in Soil	Organochlorine Pesticides in soil	Organophosphorus Pesticides in Soil	PCBs in Soil	Acid Extractable metalsin soil	Asbestos ID - soils	CEC	Misc Inorg - Soil
10601/TP101/0.0-0.1				\checkmark	\checkmark		\checkmark			
10601/TP102/0.0-0.1				\checkmark	\checkmark		\checkmark			
10601/TP103/0.1-0.2				\checkmark	\checkmark		\checkmark			
10601/TP104/0.0-0.1	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
10601/TP105/0.1-0.2				\checkmark	\checkmark		\checkmark		\checkmark	\checkmark
10601/TP106/0.0-0.1				\checkmark	\checkmark		\checkmark			
10601/TP107/0.0-0.1				\checkmark	\checkmark		\checkmark			
10601/TP108/0.1-0.2				\checkmark	\checkmark		\checkmark		\checkmark	\checkmark
10601/DUP01							\checkmark			
Trip Spike	\checkmark									
Trip Blank	\checkmark									

The ' \checkmark ' indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Please contact the laboratory immediately if observed settled sediment present in water samples is to be included in the extraction and/or analysis (exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS analysis where solids are included by default.

TAT for Micro is dependent on incubation. This varies from 3 to 6 days.

Anna Bui

From:	Ben McGiffin <bmcgiffin@martens.com.au></bmcgiffin@martens.com.au>
Sent:	Monday, 12 May 2025 1:55 PM
То:	Stuart Chen; Envirolab Sydney Sample Receipt
Cc:	Gray Taylor; Bryson Monaghan
Subject:	RE: Results for Registration 379564 P2410601 Detailed Site Investigation: 3 Memory
	Ave

CAUTION: This email originated from outside of the organisation. Do not act on instructions, click links or open attachments unless you recognise the sender and know the content is authentic and safe.

Thanks Stuart Please proceed with a 2day TAT Thank you

Ben McGiffin Environmental Manager, Principal Engineer

T + 61-2-9476-9999E bmcgiffin@martens.com.auSuite 201, 20 George Street, Hornsby, NSW 2077

www.martens.com.au

This message is intended for the addressee named and may contain confidential / privileged information. If you are not the intended recipient, please delete it and notify the sender. Views expressed in this message are those of the individual sender, and are not necessarily the views of Martens & Associates Pty Ltd. You should scan any attached files for viruses.

CUS MEF. 379564-A MT. 2 DAM DMG. 14/5/25 AB-

From: Stuart Chen <SChen2@envirolab.com.au>
Sent: Monday, 12 May 2025 1:54 PM
To: Ben McGiffin
bmcgiffin@martens.com.au>; Envirolab Sydney Sample Receipt
<Samplereceipt@envirolab.com.au>
Cc: Gray Taylor <gtaylor@martens.com.au>; Bryson Monaghan
bmonaghan@martens.com.au>
Subject: RE: Results for Registration 379564 P2410601 Detailed Site Investigation: 3 Memory Ave

Hey Ben,

Each sample is \$18 exc gst. Adding 25% surcharge for 2day tat would be \$22.50.

@Envirolab Sydney Sample Receipt Please note A-job.

Kind Regards,

Stuart Chen | Report Coordinator | Envirolab Services

Great Science. Great Service.

12 Ashley Street Chatswood NSW 2067

T 612 9910 6200

E <u>SChen2@envirolab.com.au</u> | W <u>www.envirolab.com.au</u>

Follow us on: LinkedIn | Facebook | Twitter

Samples will be analysed per our T&C's.

From: Ben McGiffin <<u>bmcgiffin@martens.com.au</u>>
Sent: Monday, 12 May 2025 12:44 PM
To: Stuart Chen <<u>SChen2@envirolab.com.au</u>>
Cc: Envirolab Sydney Sample Receipt <<u>Samplereceipt@envirolab.com.au</u>>; Gray Taylor <<u>gtaylor@martens.com.au</u>>;
Bryson Monaghan <<u>bmonaghan@martens.com.au</u>>
Subject: RE: Results for Registration 379564 P2410601 Detailed Site Investigation: 3 Memory Ave

CAUTION: This email originated from outside of the organisation. Do not act on instructions, click links or open attachments unless you recognise the sender and know the content is authentic and safe.

Hi Stuart

1-9

Can we please book Chromium speciation for all the samples in this job please. Can you please confirm what the price for this would be for two day turn around vs standard reporting time? Thanks

Ben McGiffin

Environmental Manager, Principal Engineer

T + 61-2-9476-9999
 <u>bmcgiffin@martens.com.au</u>
 Suite 201, 20 George Street, Hornsby, NSW 2077

www.martens.com.au

This message is intended for the addressee named and may contain confidential / privileged information. If you are not the intended recipient, please delete it and notify the sender. Views expressed in this message are those of the individual sender, and are not necessarily the views of Martens & Associates Pty Ltd. You should scan any attached files for viruses.

From: Stuart Chen <<u>SChen2@envirolab.com.au</u>> Sent: Friday, 9 May 2025 5:36 PM

To: <u>martens@esdat.com.au</u>; Accounts <<u>accounts@martens.com.au</u>>; Ben McGiffin <<u>bmcgiffin@martens.com.au</u>>; Bryson Monaghan <<u>bmonaghan@martens.com.au</u>>; Gray Taylor <<u>gtaylor@martens.com.au</u>> Subject: Results for Registration 379564 P2410601 Detailed Site Investigation: 3 Memory Ave

Please refer to attached for: a copy of the Certificate of Analysis a copy of the COC/paperwork received from you ESDAT Extracts an Excel or .csv file containing the results a copy of the Invoice

Please note that a hard copy will not be posted.

Enquiries should be made directly to: customerservice@envirolab.com.au

To view information on uncertainty guidelines click here

How did we do? Send Feedback

Kind Regards,

Stuart Chen | Report Coordinator | Envirolab Services

Great Science. Great Service.

SAMPLE RECEIPT ADVICE

Client Details	
Client	Martens & Associates Pty Ltd
Attention	Ben McGiffin

Sample Login Details	
Your reference	P2410601 Detailed Site Investigation: 3 Memory Ave
Envirolab Reference	379564-A
Date Sample Received	02/05/2025
Date Instructions Received	12/05/2025
Date Results Expected to be Reported	14/05/2025

Sample Condition	
Samples received in appropriate condition for analysis	Yes
No. of Samples Provided	Additional analysis
Turnaround Time Requested	2 days
Temperature on Receipt (°C)	5
Cooling Method	Ice
Sampling Date Provided	YES

Comments Nil

Please direct any queries to:

Aileen Hie	Jacinta Hurst
Phone: 02 9910 6200	Phone: 02 9910 6200
Fax: 02 9910 6201	Fax: 02 9910 6201
Email: ahie@envirolab.com.au	Email: jhurst@envirolab.com.au

Analysis Underway, details on the following page:

Sample ID	Misc Soil - Inorg	On Hold
10601/TP101/0.0-0.1	 ✓ 	
10601/TP102/0.0-0.1	 ✓ 	
10601/TP103/0.1-0.2	\checkmark	
10601/TP104/0.0-0.1	\checkmark	
10601/TP105/0.1-0.2	 ✓ 	
10601/TP106/0.0-0.1	\checkmark	
10601/TP107/0.0-0.1	 ✓ 	
10601/TP108/0.1-0.2	\checkmark	
10601/DUP01	\checkmark	
Trip Spike		✓
Trip Blank		\checkmark

The ' \checkmark ' indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Please contact the laboratory immediately if observed settled sediment present in water samples is to be included in the extraction and/or analysis (exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS analysis where solids are included by default.

TAT for Micro is dependent on incubation. This varies from 3 to 6 days.

Appendix I – EIL Calculation Sheets

Outputs		
Land use	Zn soil-specific EILs (mg contaminant/kg dry soil)	
	Fresh	Aged
National parks and areas of high conservation value	85	190
Urban residential and open public spaces	230	590
Commercial and industrial	340	870

Inputs		
Select contaminant from list below		
Cr_III		
Below needed to calculate fresh and aged		
ACLs		
Enter % clay (values from 0 to 100%)		
30		
Below needed to calculate fresh and aged		
ABCs		
Measured background concentration		
(mg/kg). Leave blank if no measured value		
or for fresh ABCs only		
Enter iron content (agua regia method)		
(values from 0 to 50%) to obtain estimate		
of background concentration		
7		
or for aged ABCs only		
Enter State (or alegant State)		
Enter State (or closest State)		
NSW		
Enter traffic volume (high or low)		
Enter traine volume (nigh or low)		

Outputs			
Land use	Cr III soil-specific EILs		
	Fresh	Aged	
National parks and areas of high conservation value	150	190	
Urban residential and open public spaces	300	580	
Commercial and industrial	460	960	

Outputs			
Land use	Cu soil-specific EILs		
	(mg contaminant/kg dry soil)		
	Fresh	Aged	
National parks and areas of high conservation value	70	85	
Urban residential and open public spaces	130	220	
Commercial and industrial	180	310	

Select contaminant from list below		
Ni		
Below needed to calculate fresh and aged ACLs		
Enter cation exchange capacity (silver		
thiourea method) (values from 0 to 100		
choic/kg dwt)		
15		
Below needed to calculate fresh and aged	ł	
Below needed to calculate fresh and aged ABCs	ł	
Below needed to calculate fresh and aged ABCs	k	
Below needed to calculate fresh and aged ABCs Measured background concentration (mg/kg) Leave blank if no measured value	k	
Below needed to calculate fresh and aged ABCs Measured background concentration (mg/kg). Leave blank if no measured value	t e	
Below needed to calculate fresh and aged ABCs Measured background concentration (mg/kg). Leave blank if no measured value	e	
Below needed to calculate fresh and aged ABCs Measured background concentration (mg/kg). Leave blank if no measured value or for fresh ABCs only Enter iron content (agua regia method)	e	
Below needed to calculate fresh and aged ABCs Measured background concentration (mg/kg). Leave blank if no measured value or for fresh ABCs only Enter iron content (aqua regia method) (values from 0 to 50%) to obtain estimate	e	
Below needed to calculate fresh and aged ABCs Measured background concentration (mg/kg). Leave blank if no measured value or for fresh ABCs only Enter iron content (aqua regia method) (values from 0 to 50%) to obtain estimate of background concentration	e	
Below needed to calculate fresh and aged ABCs Measured background concentration (mg/kg). Leave blank if no measured value or for fresh ABCs only Enter iron content (aqua regia method) (values from 0 to 50%) to obtain estimate of background concentration 7	e	
Below needed to calculate fresh and aged ABCs Measured background concentration (mg/kg). Leave blank if no measured value or for fresh ABCs only Enter iron content (aqua regia method) (values from 0 to 50%) to obtain estimate of background concentration 7 or for aged ABCs only	e	
Below needed to calculate fresh and aged ABCs Measured background concentration (mg/kg). Leave blank if no measured value or for fresh ABCs only Enter iron content (aqua regia method) (values from 0 to 50%) to obtain estimate of background concentration 7 or for aged ABCs only	e	
Below needed to calculate fresh and aged ABCs Measured background concentration (mg/kg). Leave blank if no measured value or for fresh ABCs only Enter iron content (aqua regia method) (values from 0 to 50%) to obtain estimate of background concentration 7 or for aged ABCs only Enter State (or closest State)	e	
Below needed to calculate fresh and aged ABCs Measured background concentration (mg/kg). Leave blank if no measured value or for fresh ABCs only Enter iron content (aqua regia method) (values from 0 to 50%) to obtain estimate of background concentration 7 or for aged ABCs only Enter State (or closest State) NSW	e	
Below needed to calculate fresh and aged ABCs Measured background concentration (mg/kg). Leave blank if no measured value or for fresh ABCs only Enter iron content (aqua regia method) (values from 0 to 50%) to obtain estimate of background concentration 7 or for aged ABCs only Enter State (or closest State) NSW Enter traffic volume (high or low)		
Below needed to calculate fresh and aged ABCs Measured background concentration (mg/kg). Leave blank if no measured value or for fresh ABCs only Enter iron content (aqua regia method) (values from 0 to 50%) to obtain estimate of background concentration 7 or for aged ABCs only Enter State (or closest State) NSW Enter traffic volume (high or low)	e	

Outputs			
Land use	Ni soil-specific EILs (mg contaminant/kg dry soil)		
	Fresh	Aged	
National parks and areas of high conservation value	35	40	
Urban residential and open public spaces	95	220	
Commercial and industrial	160	380	

Appendix J – Photograph of the IA

Plate 1: View adjacent to the southeast corner of the IA, facing north. Wire fence along southern and eastern boundaries. Grass, shrubs and trees indicative of entire IA. Dated 27 January 2025.

martens

Plate 2: View in the centre of the IA, facing northeast. Grass, shrubs and trees. Dated 27 January 2025.

Plate 3: View in the centre of the IA, facing north. Grass, shrubs and trees. Dated 1 May 2025.

martens

Plate 4: View of TP102. Soil is generally indicative of all locations across the IA. Dated 1 May 2025.